

Figure 1. The E. coli fatty acid biosynthesis pathway.

Difference in final [NADH] due to triclosan

Determine triclosan by measuring NADH

How can we measure NADH?

Which of these solutions will let more light through?

proportional to

CONCENTRATION

Which of these solutions will have a higher absorption value?

How might we represent this graphically?

Absorption can occur only when

$$\Delta \mathbf{E} = \mathbf{E}2 - \mathbf{E}1 = \frac{\mathbf{hc}}{\mathbf{\lambda}}$$

Energy is quantized

Every chemical has a unique electron orbital,

Thus each chemical has a specific energy required to bump its molecules to a higher orbital

Specific energy = specific wavelength

Difference in final [NADH] due to triclosan

A CHEMBURVIVAL ENTERPRISES PRODUCTION - 0 - 2014