Medium Preparation of Autoinduction Media Modified from Li, et. al., 2011 ## 1. Prepare all stock solution as in Table 1 | Name | Working concentration | Stock solution preparation | Sterilization method | |--|--|---|---| | 50 X MgSO ₄ stock solution | 0.586 g L ⁻¹ MgSO ₄ | Add 30 g MgSO ₄ .7H ₂ O (MW: 246.47) to 500 ml
graduated cylinder. Bring final volume to 0.5 L with
water (Mill-Q or similar quality) | 121°C autoclave or
filtration (0.2 μm) | | 4 X 2.94-11.07-7.6 carbon source
stock solution | 2.94 g L ⁻¹ glucose
11.07 g L ⁻¹ glycerol
7.6 g L ⁻¹ lactose | Add 12.92 g glucose.H ₂ O (MW: 198.17), 44.28 g
glycerol (MW: 92.09) and 32 g lactose.H ₂ O (MW:
360.31) to 1 L graduated cylinder. Bring final volume to
1 L with water (Mill-Q or similar quality) | 121°C autoclave or
filtration (0.2 μm) | | 5 X 2.94-7.38-3.8 carbon source
stock solution | 2.94 g L ⁻¹ glucose
7.38 g L ⁻¹ glycerol
3.8 g L ⁻¹ lactose | Add 16.15 g glucose.H ₂ O (MW: 198.17), 36.9 g glycerol (MW: 92.09) and 20 g lactose.H ₂ O (MW: 360.31) to 1 L graduated cylinder. Bring final volume to 1 L with water (Mill-Q or similar quality) | 121°C autoclave or
filtration (0.2 µm) | | 5000 X Na ₂ MoO ₄ .H ₂ O stock solution | 2.1 mg L ⁻¹ Na ₂ MoO ₄ .2H ₂ O | Add 525 mg Na ₂ MoO ₄ 2H ₂ O (MW: 241.95) to 50 ml
graduated cylinder. Bring final volume to 50 mL with
water (Mill-Q or similar quality) | Filtration (0.2 μm) | | 2000 X trace element stock
solution | 2.5 mg L ⁻¹ CoCl ₂ .6H ₂ O
15 mg L ⁻¹ MnCl ₂ .4H ₂ O
1.5 mg L ⁻¹ CuCl ₂ .2H ₂ O
3 mg L ⁻¹ H ₃ BO ₃
33.8 mg L ⁻¹ Zn(CH ₃ COO) ₂ .2H ₂ O
14.10 mg L ⁻¹ Titriplex III | Add 0.5 g CoCl ₂ .6H ₂ O (MW: 237.93), 3 g MnCl ₂ .4H ₂ O (MW: 197.9), 0.3 g CuCl ₂ .2H ₂ O (MW: 170.48), 0.6 g H ₃ BO ₃ (MW: 61.83), 6.76 g of Zn(CH ₃ COO) ₂ .2H ₂ O (MW: 219.49), 2.82 g Titriplex III (MW: 372.24) to 100 ml graduated cylinder. Bring final volume to 100 mL with water (Mill-Q or similar quality) | Filtration (0.2 μm) | | 50 X (NH ₄) ₂ HPO ₄ stock solution | 4 g L ⁻¹ (NH ₄) ₂ HPO ₄ | Add 100 g (NH ₄) ₂ HPO ₄ (MW: 132.06) to 500 ml
graduated cylinder. Bring final volume to 500 mL with
water (Mill-Q or similar quality) | 121°C autoclave or
filtration (0.2 μm) | | 10 X KH ₂ PO ₄ stock solution | 13.3 g L ⁻¹ KH2PO ₄ | Add 133 g KH ₂ PO ₄ (MW: 136.09) to 1 L graduated
cylinder. Bring final volume to 1 L with water (Mill-Q or
similar quality) | 121°C autoclave or
filtration (0.2 μm) | | 50 X Citric acid stock solution | 1.5542 g L ⁻¹ Citric acid | Add 42.5 g Citric acid.H ₂ O (MW: 210.14) [or 38.855 g
Citric acid (MW: 192.12)] to 500 ml graduated cylinder.
Bring final volume to 500 mL with water (Mill-Q or
similar quality) | 121°C autoclave or
filtration (0.2 μm) | | 50 X Fe(III) citrate stock solution | 0.1008 g L ⁻¹ Fe(III) citrate | Add 2.52 g Fe(III) citrate (MW: 244.94) to 500 ml
graduated cylinder. Bring final volume to 500 mL with
water (Mill-Q or similar quality) | 121°C autoclave or
filtration (0.2 μm) | | 25 X NH ₄ OH stock solution | To bring final pH to 6.8 | Add 50 ml Ammonium hydroxide (30~33%) to 500 ml
graduated cylinder. Bring final volume to 500 mL with
water (Mill-Q or similar quality) | | Table 1. Preparation of stock solutions All stock solutions are autoclaved prior to mixing unless filtration is required. Each stock solutions is contained in a different bottle. ## 2. Mixing Mixing is done by adding each of stock solution in order as listed in Table 2 without making Group A and Group B solutions. Mixing is done under aseptic condition in Biosafety Cabinet. Once the autoinduction media has been made, store at 4°C or keep refrigerated. | Groups | | Name of medium | S-DAB (HNC) | |---------|----------------------------------|---|-----------------------| | | | Application of the medium | Good
oxygen supply | | | | Inducer | Lactose | | | | Volume of stock solution | ml | | Agroup | Magnesium* | 50 X MgSO ₄ stock solution | 20 | | | Carbon
source* | 4 X 2.94-11.07-7.6 carbon source stock solution | 250 | | | | 5 X 2.94-7.38-3.8 carbon source stock solution | | | | | 20 X Glucose stock solution | | | | Trace** | 5000 times Na ₂ MoO ₄ H ₂ O stock solution | 0.2 | | B group | Elements** | 2000 times trace element stock solution | 0.5 | | | Nitrogen* | 50 X (NH ₄) ₂ HPO ₄ stock solution | 20 | | | Phosphate
and
other salts* | 10 X KH ₂ PO ₄ stock solution | 100 | | | | 50 X Citric acid stock solution | 20 | | | | 50 X Fe(III) citrate stock solution | 20 | | | pH
adjusting* | 25 X NH ₄ OH stock solution | 45~50 | | | | 50 X 5 mol L ⁻¹ NaOH stock solution | _ | | | Solvent* | Water (Milli-Q or similar quality) | 520 | Table 2. Medium preparation ## References: Li, Z., Kessler, W., Van Den Heuvel, J., Rinas, U. Simple defined autoinduction medium for high-level recombinant protein production using T7-based *Escherichia coli* expression systems. (2011) *Applied Microbiology and Biotechnology*, 91 (4), pp. 1203-1213.