LEARN TO LOVE ARDUINOS WITH iGEM!
Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The iGEM Foundation</td>
<td>2</td>
</tr>
<tr>
<td>How highschools can get involved in iGEM</td>
<td>2</td>
</tr>
<tr>
<td>The Arduino Board</td>
<td>3</td>
</tr>
<tr>
<td>The Breadboard</td>
<td>3</td>
</tr>
<tr>
<td>How Arduinos Work in Digital Mode</td>
<td>4,5</td>
</tr>
<tr>
<td>Digital vs Analogue</td>
<td>6</td>
</tr>
<tr>
<td>Coding in C</td>
<td>7,8</td>
</tr>
<tr>
<td>Arduino Maths</td>
<td>9</td>
</tr>
<tr>
<td>Learn More About Arduinos</td>
<td>10</td>
</tr>
<tr>
<td>Activities for Arduinos</td>
<td>10</td>
</tr>
</tbody>
</table>
High schools have been part of iGEM since 2011, with their own separate competition. As of this year high schools will have their own track in the main competition allowing them to compete, not only against other schools, but universities across the world as well. They are required to work on a project, make a wiki page and poster, and present in Boston just like all the other teams.

http://2015.igem.org/Tracks/HighSchool
Arduino Board

USB Computer Communication
Digital Ground
Digital Pins
Analogue Power
Analogue Ground
Analogue Pins

http://www.multiwingspan.co.uk

Breadboard

Power Column
Ground Column

Horizontal Rows: contain 5 sockets each. Components that are connected in the same row are in circuit when the power is running.

http://cdn.sparkfun.com
How the Arduino Works in Digital Mode

Digital Read: Tell if pin is on or off

Pin to test (from 0-13)

```c
int pinValue = digitalRead(6);
```

Look at pin 6, tell me whether it is **HIGH** (someone is pushing a button) or **LOW** (button not being pressed).

Save this value in the variable “pinValue”.

Digital Write: Turn pin on or off

Pin to set (from 0-13)

```c
digitalWrite(6, HIGH);
```

Voltage to set it to – **HIGH** or **LOW**
How the Arduino Works in Digital Mode

The pins are where you attach the circuits you make to the Arduino (e.g. an LED). These circuits are connected from the pin to the “ground” pin – you can just think of this as connecting the circuit to a little power supply/battery. The Arduino controls the current through this circuit, simply by opening or closing a switch. This switch is controlled by the program you load onto the Arduino. When you write “digitalWrite(3, HIGH)” you are actually telling the Arduino to close the switch next to pin 3 so the circuit connected to pin 3 is powered.
Digital vs Analogue Voltage

Digital

The only possible voltages are **HIGH** or **LOW** – only two possibilities. **HIGH** is full voltage (e.g. 5 volts) whereas **LOW** is off (0 volts).

Analogue

There are supposed to be a continuous range of voltages for “analogue” pins. Think of it like a dimmer switch on lights – you can vary the brightness of the lights by varying the voltage input, controlled by some sort of dial. The analogue pins are supposed to be like this – but they aren't.

They actually only take a **set range** of input voltages (in exactly the same as digital pins) except they can take 255 different voltage inputs (so, evenly spaced inputs from 0 to 5 V for example). This can be used to give the **illusion of an analogue** input.
Coding in C++

// (double slash): This, placed before any code, will not be read by the computer. It is a comment to let you or others know what that piece of code does.

/**/: This carries out the same function as above, except allows for several lines of code. (Text goes between the **).

{} (curly brackets): These follow a function being called and contain inside them all the code that is the information (statements) being fed to that function. If you use an opening curly bracket you must make sure to close it later in your code.

; (semicolon): Shows the point where a statement ends.

setup function():
• Called when a sketch starts.
• Runs only once, after a power up or reset.
• Function initialises the variables and pins.

```cpp
void setup() {
  /* put your setup code here, to run once: */
}
```

loop function():
• Runs a section of code repeatedly.
• The program can change and respond between loops.

```cpp
void loop() {
  /* put your main code here, to run repeatedly: */
}
```
For Loop

for (initialisation; termination condition; increment)
{
 statement(s)
}

If Statement – to implement logic

if (test criteria)
{
 //if the above test criteria is true, run the codes within the brackets.
 statement(s)
}
else if (another test criteria)
{
 statement(s)
}
else
{
 //This code is run if the two above test criteria are false.
 statement(s)
}

The language of computers: **Binary**

Bit-can be in one of two states: ON (1) or OFF (0)

Types: indicate how bits will be stored. These are important as tells the computer how to interpret the binary

- **int**: number
- **float**: decimal number
- **string**: series of characters
- **bool**: has one of two values: true (1) or false (0)
Normally, “=” is saying 'the thing on the left is equal to the thing on the right'. In C, “=” is used to SET the variable on the left (e.g. x) to a specific value.

<table>
<thead>
<tr>
<th>int x = 7;</th>
<th>Creates a variable called x and sets it equal to 7.</th>
</tr>
</thead>
<tbody>
<tr>
<td>x = x + 3;</td>
<td>Sets value of x to its previous value plus 3 (x now equals 10)</td>
</tr>
<tr>
<td>x = x * 4;</td>
<td>Sets value of x to its previous value times 4 (x now equals 40).</td>
</tr>
</tbody>
</table>

What happens?
The right of the equals sign is calculated first – so you can use your variable (above, this is x) in this calculation. After the calculation finishes, the value on the right is saved. The variable on the left of the equals sign is then set as this value. This is how “x = x + 3” makes sense.

Note: You can UPDATE a variable simply by using the variable name*
Want to learn more about Arduinos?
The Arduino Website itself is a fantastic website with loads of teaching resources, projects to carry out with your arduino and an extensive help page, covering any problems you may have.

https://www.arduino.cc

Where to buy your own Arduino.

- https://store.arduino.cc
- http://www.adafruit.com
- https://shop.pimoroni.com

Some more great projects

10 Simple-But-Fun Projects to Make with Arduino

10 Great Arduino Projects for Beginners
http://www.makeuseof.com/tag/10-great-arduino-projects-for-beginners/

Arduino Project Ideas
http://playground.arduino.cc/Projects/Ideas
Please keep following the team to see how we get on in the competition!

http://2015.igem.org/Team:Cambridge-JIC

https://instagram.com/iGEMCambridge

https://twitter.com/iGEMCambridge