Minimal media.

For our experiments we have used minimal media designed for B. subtilis. The plates have been made by following this protocol (for 1 liter).

	stock	ml.
Distilled water	see note	747,5
SZX5 media (see below)	5X	200
Glucose	20%	20
Glutamate	20%	10
MnSo ₄	0.1mg/ml	2
FeCl ₃	50 mM	0.5
Thiamin	1 mg/ml	10
Tryptophane	4mg/ml	10

Notes:

The water should not be to clean. By experience orange water works better than ultra-pure glass distilled water.

Procedure:

For plates autoclave water and agar (20 g/l final media) and then add additional sterile ingredients.

SZx5:

All the following ingredients should be dissolved in 900 ml H_2O (per liter) and adjusted to pH 7 with 10 N NaOH, top up to 1 liter and autoclave

K ₂ HPO ₄	70 g
KH_2PO_4	30 g
Trisodiumcitrate	5 g
$MgSO_4$	1 g
(NH4)2SO4	10 g

5-Flourouracil plates:

In order to make these the normal Minimal media would be prepared and before it is poured into plates, add 5-flurouracil till an approximately 25 μ M.

Media needed:

- Glucose
- Glutamate

- MnSo₄
- FeCl₃
- Thiamin
- Tryptophane
- K₂HPO₄
- KH₂PO₄
- Trisodiumcitrate
- MgSO₄
- (NH₄)₂SO₄