Minimal media. For our experiments we have used minimal media designed for B. subtilis. The plates have been made by following this protocol (for 1 liter). | | stock | ml. | |------------------------|----------|-------| | Distilled water | see note | 747,5 | | SZX5 media (see below) | 5X | 200 | | Glucose | 20% | 20 | | Glutamate | 20% | 10 | | MnSo ₄ | 0.1mg/ml | 2 | | FeCl ₃ | 50 mM | 0.5 | | Thiamin | 1 mg/ml | 10 | | Tryptophane | 4mg/ml | 10 | ## **Notes:** The water should not be to clean. By experience orange water works better than ultra-pure glass distilled water. ## **Procedure:** For plates autoclave water and agar (20 g/l final media) and then add additional sterile ingredients. # **SZx5**: All the following ingredients should be dissolved in 900 ml H_2O (per liter) and adjusted to pH 7 with 10 N NaOH, top up to 1 liter and autoclave | K ₂ HPO ₄ | 70 g | |---------------------------------|------| | KH_2PO_4 | 30 g | | Trisodiumcitrate | 5 g | | $MgSO_4$ | 1 g | | (NH4)2SO4 | 10 g | # **5-Flourouracil plates**: In order to make these the normal Minimal media would be prepared and before it is poured into plates, add 5-flurouracil till an approximately 25 μ M. ## Media needed: - Glucose - Glutamate - MnSo₄ - FeCl₃ - Thiamin - Tryptophane - K₂HPO₄ - KH₂PO₄ - Trisodiumcitrate - MgSO₄ - (NH₄)₂SO₄