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1 Introduction

1.1 Mathematical Representations of Noise

A biological process can be mathematically represented as a time-dependent
random variable which denotes the concentration (or copy number) of an out-
put molecule. Such a random variable has a mean level of expression, and
introducing stochastic effects causes the variable to fluctuate around its mean
in accordance with its underlying probability distribution. Within this frame-
work, a variety of mathematical representations for the noise of the distribution
abound in the literature. An important distinction arises between the Fano
Factor, σ2/µ, (where σ2 denotes the variance and µ denotes the mean of the
process), and the squared Coefficient of Variation σ2/µ2. While in our data
analysis we will be following Elowitz et al ’s choice of using the squared Coeffi-
cient of Variation to represent noise, we could also have analyzed noise strength
(or the fold change of the signal’s noise relative to the noise of a Poisson process
with the same mean) by using the Fano Factor [?][?].

The noise η2 = σ2/µ2 of a process is a nondimensional quantity, and hence
is difficult to interpret intuitively. We caution the reader not to focus on the
specific numeric values of noise in our results, but rather to emphasize the
relative differences between noise values of different promoters.

In Figure 1 we present a diagram to help develop some intuition for the effect
of η2 on a signal. The three traces are Poisson processes, and one potential
interpretation for the signal is to envision the y-axis representing the number
of mRNA copies produced within some time interval– in this way the processes
could serve as an idealized model of transcription (take note that a Poisson
process is too oversimplified to accurately model transcription). Regardless of
the interpretation, however, it is clear that an increase in noise causes the signal
to exhibit a much wider distribution of values within the observed timeframe,
and that it is far more difficult to precisely predict what value the signal might
take at a given time.
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Figure 1: Representative time traces of a random signal Y ∼ Poiss(λ), nor-
malized to its mean for various values of η2 = 1/λ. y-axis represents arbitrary
units.

1.2 The Dual Reporter System

In his 2002 study, Michael Elowtiz and colleagues introduced a revolutionary
new concept that allows one to decompose the observed noise in a signal into
its intrinsic and extrinsic components [?]. By placing two distinguishable copies
of an identical reporter into the system, one can assume that the underlying
probability distribution for the signals generated by the reporters will be the
same. Under this assumption, measuring the differences between these signals
will provide information about the spread of the distribution itself– this is the
intrinsic noise of the process. All other noise effects present in the signal would
arise from extrinsic factors. A good analogy for intrinsic noise is the correlation
between two signals– in the example of transcription, if a promoter has high
intrinsic noise, then the signals between two fluorescent proteins under the same
reporter should be less correlated than if a promoter has low intrinsic noise
(Figure 2).
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Figure 2: Two identical, independent, normally distributed random signals with
correlation coefficients 0.75 and 0.01. y-axis represents arbitrary units. Within
a cell, the copy number of two fluorescent proteins under two copies of the same
low-noise / high-noise promoter might look like the top / bottom figure.
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The final noise decomposition equation, as presented in [?], is

η2int =
〈(c− y)2〉

2〈c〉〈y〉
; η2ext =

〈cy〉 − 〈c〉〈y〉
〈c〉〈y〉

; η2tot =
〈c2 + y2〉 − 2〈c〉〈y〉

2〈c〉〈y〉
(1)

Where c and y represent observed values from the two reporter signals, and 〈·〉
denotes the sample mean of the values. Notice that η2int + η2ext = η2tot. See [?]
for the derivation of (1).

2 Data Analysis Methods

Because not every cell on the slide was fluorescent, we thresholded our cells
by finding the dimmest cyan-fluorescent cell in each image and removing any cell
whose cyan level was below this value. We did the same for yellow fluorescence.
We also removed any cells who displayed the oversaturation value (4095 au) for
either channel.

In order to accurately compare the fluorescence values between CFP and
YFP, we then divided each fluorescence value by the area of the cell to unbias
the readout from larger cells. Next we divided all fluorescence values for a
channel by the sample mean of the channel to normalize the data. At this stage
we performed a two-sample Kolmogorov-Smirnov Test (α = 0.01) between the
normalized CFP values and normalized YFP values collected from three fields
of view for a biological replicate. We failed to reject the null hypothesis for any
of our three strains, implying that for a given promoter, the CFP data and YFP
data are sampled from the same underlying distribution. This suffices to justify
the assumption that the CFP and YFP genes are identically regulated by the
cell and hence represent two distinguishable variants of the same reporter.
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Figure 3: Representative histogram for data from the R0011 promoter. n = 327
cells were analyzed after thresholding.
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3 Results and Interpretation

We obtained fluorescence images for dual-integrated CFP and YFP under three
different promoters from the iGEM Registry: R0010, R0011, and R0051. These
are the lacI-repressed promoter, the lacI-repressed lambda pL hybrid promoter,
and the lambda cl-repressed promoter. All three are constitutive promoters
that were expressed in the absence of their repressors. In particular, R0011 was
specifically synthesized for strong transcription.

The noise values, expressed in Table 1, reveal that the intrinsic noise of R0011
is an order of magnitude lower than those of R0010 and R0051. Although all
three promoters are simply labeled as ’strong’ promoters on the Registry, such
a discrepancy highlights a significant difference in the spread of the underlying
probability distribution governing transcription under the R0011 promoter (see
Figure 5 for an idealized example for a generic random process with these noise
values).

Promoter η2int η2ext η2tot
R0010 0.0707 0.4383 0.5089
R0011 0.0040 0.4005 0.4045
R0051 0.0869 0.4553 0.5422

Table 1: Measured noise values based on fluorescence readings from dual-
integrated CFP and YFP based on n = 1 sample per promoter.

Figure 4: Intrinsic, Extrinsic, and Total Noise for each Measured Promoter.
Sample size n = 1 for each. Values correspond to Table 1.
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Figure 5: Time traces of random Poisson signals Y ∼ Poiss(1/η2int), normalized
to their means, for the η2int values that corresponded to those of R0011, R0010,
and R0051. y-axis represents arbitrary units.

As synthetic biology moves forward and we design ever more complicated
genetic networks, we will soon lose the luxury of being able to ignore the impact
of stochasticity on the effectiveness of our constructs. We hope that by conduct-
ing this preliminary exploration into the measurement of the intrinsic noisiness
of promoters, we convey to iGEM and the synthetic biology community the ne-
cessity of rigorous and accurate knowledge of the stochastic properties of each
promoter.
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