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Data processing and quality control

Bioinformatics

What we produced:
- FASTQ files

- FASTQC reports

- SAM and BAM files

Figure: Schematic overview of the pipeline for RNA-seq data analysis
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Differential expression analysis

Bioinformatics

What we produced:
- R script: DE_analysis.R

- Table with read counts (tab separated format, 7 columns, ENSG ids)

RNA-seq data can be difficult to interpret (especially in terms of differential expression
quantification). Thus, we decided to adopt a simple method for the analysis, based on counting, for
each gene and for each sample, the number of available reads and then testing for significant
differences between two experimental conditions or groups.

We wrote an R script that automatically creates a PDF file (in the current directory) with all the
figures necessary for visual inspection and result interpretation. The input is a tab separated file

with reads counts.

ensembl_id

ENSG00000000003
ENSG00000000005
ENSG00000000419
ENSG00000000457
ENSG00000000460
ENSG00000000938
ENSG00000000971
ENSG00000001036
ENSG00000001084

melanocyte_1

1964
0
15122
12129
21930
48
125
11611
11429

2409
2
19592
14893
25575
58
229
14125
13795

We tested two designs, as illustrated in the tables below:

- normal cells vs cancerous cells (4 samples)

- cancerous cells vs cancerous drug treated (4 samples)

Sample name
melanocyte_1
melanocyte_2
melanome_1

melanome_2

Condition

M

melanocyte_2 melanome_1 melanome_2
2328 2451
10 12
38225 36654
7483 7812
13123 13840
26 42
124 236
14067 13518
3549 3279
Figure: Example input format for DE analysis
Sample name Condition
melanoma_1 C
melanoma_2 C
melanome_drug_1 D
melanome_drug_2 D

M
C
C

A) Visual exploration of the samples

Prior to checking distances between our samples, we applied a regularized-logarithm
transformation (rlog) to stabilise the variance across the mean. The effects of the transformation
are shown in the figure below.
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We noticed that this step was particularly important for genes with low read counts.

We then checked the distances between our samples by performing Principal Components
Analysis of the count data.

PC2

melanocyte_1

oo,
|
|

melznReme-¢ [
T a T T T T
-50 0 50

PC1

Figure: Principal Components Analysis (PCA) plot, normal vs cancerous cells

We observed that differences between groups (normal vs cancerous cells represented in the PCA
plot above) were greater than intra-groups differences, which is expected in this kind of design.
However, as the inter-group differences were so pronounced, we figured that a great amount of
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genes would appear as differentially expressed: this is why we decided to apply really stringent

thresholds for the detection:

- log2 fold change (logFC) > 5 for upregulated genes or log2 fold change (logFC) < -5 for
downregulated genes

- AND adjusted-p-value < 0.01

B) Differential expression analysis

Firstly, we took a look at the raw data (prior to any kind of normalization). We calculated mean
counts for each gene and by condition and then the log2 fold change.

logFC(cancerous/melanocytes)
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Figure: Distribution of logFC(cancerous/normal) values - raw data

Prior to normalization, we filtered the data set to remove rows with very little or no information
(remove genes with no counts or with just a single count). This allows to eliminate 17 386
transcripts already.

Using the DESeq R package (Bioconductor, https://bioconductor.org/packages/release/bioc/html/
DESeq.html), we were able to perform normalization of our data after calculation of size factors

and we then were able to calculate mean counts for each gene and by condition and finally the
logFC.

Page 6 of 20


https://bioconductor.org/packages/release/bioc/html/DESeq.html

iGem Evry Team 2015 Bioinformatics

logFC (C/M) distribution
(normalized data)
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Figure: Distribution of logFC(cancerous/normal) values - normalized data

Finally, we applied the nbinomWaldTest() function from the DESeq package to test for significance
of coefficients in a negative binomial GLM, the model we used to assess differences in expression.

As previously stated, selection of significantly up- or downregulated genes was based on the
establishment of two selection thresholds: logFC and adjusted p-value (Wald test M vs C).
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Figure: Differential expression as a function of mean expression. Left panel: threshold set at logFC
> 2 or < -2. Right panel: threshold set at logFC > 5 or < -5.

The red dots indicate genes for which the logFC was significantly higher than 5 or lower than -5.
The circled point indicates the gene with the lowest adj-p-value.

We obtained a list of 1 649 differentially expressed genes: 931 upregulated genes and 718
downregulated genes.

C) Enrichment analysis

We retrieved the list of the 931 unregulated genes and the list of the 718 downregulated genes and
looked for significantly enriched GO (Genome Ontology) terms in these lists (independently).

The results are summarized in the figures below:
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G0:0042438,melanin biosynthetic process -
G0:0043473,pigmentation -
G0:0048066,developmental pigmentation -
G0:0060337,type | interferon—-mediated signaling pathway -
G0:0007422,peripheral nervous system development -
G0:0007286,spermatid development -
G0:0030318,melanocyte differentiation -
G0:0048484,enteric nervous system development -
G0:0042552,myelination -

G0:0030194,positive regulation of blood coagulation -
G0:0033700,phospholipid efflux =
G0:0019221,cytokine—mediated signaling pathway -
G0:0008217,regulation of blood pressure -
G0:0030155,regulation of cell adhesion -
G0:0051259,protein oligomerization -
G0:0032438,melanosome organization -

G0:0042953, lipoprotein transport -
G0:0015804,neutral amino acid transport -
G0:0007274,neuromuscular synaptic transmission -
G0:0009636,response to toxin -

G0:0003333,amino acid transmembrane transport -
G0:0050718,positive regulation of interleukin—1 beta secretion -
G0:0007399,nervous system development -
G0:0007166,cell surface receptor signaling pathway -
G0:0048168,regulation of neuronal synaptic plasticity -
G0:0016311,dephosphorylation -
G0:0050900,leukocyte migration -
G0:0009968,negative regulation of signal transduction -
G0:0042157 lipoprotein metabolic process -
G0:0033344,cholesterol efflux -

2 4 6
—log10(p-value)

o-..uulllllllllllllllll

Figure: Enrichment in GO terms, downregulated genes

G0:0002504,antigen processing and presentation of peptide or polysaccharide antigen via MHC class Il -
G0:0019882,antigen processing and presentation -

GO0:0006955,immune response -

G0:0031295,T cell costimulation -

G0:0045944,positive regulation of transcription from RNA polymerase |l promoter -
G0:0050852,T cell receptor signaling pathway -
G0:0060333,interferon-gamma-mediated signaling pathway -
G0:0019221,cytokine-mediated signaling pathway -

G0:0000122,negative regulation of transcription from RNA polymerase |l promoter -
G0:0009887,0rgan morphogenesis -

G0:0008544,epidermis development -

G0:0007399,nervous system development -

G0:0050679,positive regulation of epithelial cell proliferation -
G0:0001525,angiogenesis -

G0:0007155,cell adhesion -

G0:0021983,pituitary gland development -

GO:0010595,positive regulation of endothelial cell migration -

G0:0007507,heart development -

G0:0030326,embryonic limb morphogenesis -

G0:0046888,negative regulation of hormone secretion -

G0:0060021,palate development -

G0:0007389,pattern specification process -

G0:0006916,anti—apoptosis -

G0:0045766,positive regulation of angiogenesis -

G0:0043066,negative regulation of apoptotic process -

G0:0045893,positive regulation of transcription. DNA-dependent -
GO:0001558,regulation of cell growth -

G0:0042127,regulation of cell proliferation -

G0:0008283,cell proliferation -

-
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Figure: Enrichment in GO terms, unregulated genes
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D) DE script

pdf ("DE analysis graphics.pdf")

# Read data file

dataRNAseq = read.table("../TrimmedData/merged counts ENSG identifiers.tsv",
header = TRUE, row.names = 1)

# Calculate logFC values using read counts

# mean values for melanocytes and cancerous cells

meanMcounts = apply(dataRNAseq[,1:2],1,mean)
meanCcounts apply (dataRNAseq[,3:4],1,mean)

# logFC on raw data
logFC = log2 ((meanCcounts + 1)/ (meanMcounts + 1))

# distribution of logFC on raw data

hist (logFC, nclass = 100, main = "logFC (cancerous/melanocytes) \n(raw data)",
xlab = "log(cancerous/melanocytes) value")
abline(v = 0, col = "red")

# DESeg package

library (DESeg?2)

# Loading data for the experiment

# M = "normal" melanocyte

# C = cancerous cell

# design.txt = text file with 2 columns, first experiment and second condition
(M/C)

colData = read.table("design.txt", row.names = 1, header = TRUE)

# DESegDataSet object creation

dds = DESegDataSetFromMatrix (countData = dataRNAseq[,1:4], colData = colData,
design = ~condition)

#nrow (dds)

#60234

# Pre-filtering the data set (removing rows with no counts or a single count)
dds = dds[rowSums (counts (dds))>1, ]

#nrow (dds)

#47451

# calculation of sizeFactors
dds = estimateSizeFactors (dds)
sizeFactors (dds)

# Visual exploring of the data

# rlog transformation (regularized log transforlation, stabilize variance across
the mean)

# for fully unsupervised transformation, set blind=TRUE

rld = rlog(dds,blind=TRUE)

# Effect of the rlog transformation, first two samples

par (mfrow=c(1,2))

dds=estimateSizeFactors (dds)

plot (log2 (counts (dds,normalized=TRUE) [,1:2]+1),pch=16,cex=0.3,
main="Before rlog transformation")

plot (assay(rld) [,1:2],pch=16,cex=0.3,

main="After rlog transformation")
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# PCA plot
par (mfrow=c(1l,1))
p_rld = plotPCA(rld,intgroup=c("condition"))

p _rld = update(p rld, panel = function(x, vy, ...) {lattice::panel.xyplot(x,
Vi oe--)i

lattice::1ltext (x=x, y=y, labels=rownames (colData(rld)), pos=1l, offset=1,
cex=0.5)1})

print (p_rld)

# Sample distances
sampleDists = dist(t(assay(rld)))

# Heatmaps distances
library ("RColorBrewer")

library ("pheatmap")

sampleDistMatrix = as.matrix (sampleDists)

colnames (sampleDistMatrix) = NULL

colors = colorRampPalette (rev (brewer.pal (9,"Blues"))) (255)
pheatmap (sampleDistMatrix, clustering distance rows = sampleDists,
clustering distance cols = sampleDists, col = colors,

main="Heatmat of sample distances")

# Normalization of the data

# get normalized count values
cdsNorm = counts(dds, normalized = TRUE)

# mean values

meanMcountsNorm = apply(cdsNorm[,1:2], 1, mean)
meanCcountsNorm = apply(cdsNorm[,3:4], 1, mean)
# sd values for log(H/N) replicates
sdMcountsNorm = apply(cdsNorm[,1:2], 1, sd)
sdCcountsNorm = apply (cdsNorm[,3:4], 1, sd)

# logFC (after normalization)
logFCNorm = log2 ((meanCcountsNorm + 1)/ (meanMcountsNorm + 1))

hist (logFCNorm, nclass = 100, main = "logFC (C/M) distribution \n(normalized
data)",

xlab = "log(C/M) value")

abline(v = 0, col = "red")

# thresold can be chosen (here the values are 2 and 5) to select up and down
regulated genes

abline(v = 2, col = "red", lty = "dashed")
abline(v = -2, col = "green", lty = "dashed")
abline(v = 5, col = "red", lty = "dashed")
abline(v = -5, col = "green", 1lty = "dashed")

upGenes?2 = names (logFCNorm[logFCNorm > 27])
downGenes2 = names (logFCNorm[logFCNorm < -21])
upGenes5 = names (logFCNorm[logFCNorm > 5])
downGenes5 = names (logFCNorm[logFCNorm < =-5])

# evaluate expression level of genes
exprlLevel = apply(cdsNorm, 1, mean)

# logFC versus the level of gene expression
plot (log(exprLevel), logFCNorm, pch = 20,

xlab = "Gene expression level (log scale)", ylab = "logFC",
main = "RNAseqg data")

abline(h = 2, col = "green", lty = "dashed")

abline(h = -2, col = "red", lty = "dashed")

points (log (exprLevel [upGenes2]), logFCNorm[upGenes2], pch = 20,
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col = "green")
points (log(exprLevel [downGenes2]), logFCNorm[downGenes2], pch = 20,
col = "red")

plot (log(exprlLevel), logFCNorm, pch = 20,

xlab = "Gene expression level (log scale)", ylab = "logFC",
main = "RNAseqg data")

abline(h = 5, col = "green", 1lty = "dashed")

abline(h = -5, col = "red", lty = "dashed")

points (log(exprLevel [upGenes5]), logFCNorm[upGenes5], pch = 20,
col = "green")

points (log (exprLevel [downGenes5]), logFCNorm[downGenes5], pch = 20,
col = "red")

#H#HHE

# Perform the DE analysis with DESeq

#H#EH#H

## Differential analysis

dds = estimateDispersions (dds)
dds nbinomWaldTest (dds)

res results (dds)

mcols (res,use.names=TRUE)

# compare logFC values obtained with DESeg
plot (res[, "log2FoldChange"], logFCNorm, pch = 20,

xlab = "logFC calculated with DESeq", vylab = "LogFC
normalization)")
hist (res$padj, breaks = 20, col = "black", border="white",

xlab = "pvalues calculated with DESeq",

main = "Distribution of adjusted pvalues (DESeq)")
hist (-log(res$padj), breaks = 20, col = "black", border="white",

xlab = "-log(p-value)",

main = "Distribution of -log(adjusted pvalues)")

# writing of the results

write.table(res, "DESeq2 statistics.txt", row.name=T, quote=F, sep='\t')
write.table (upGenes2, "up genes 2.txt", row.name=F, col.name=F, quote=F)
write.table(
(
(

write.table (upGenes5, "up genes 5.txt", row.name=F, col.name=F, quote=F)

(after

downGenes2, "down genes 2.txt", row.name=F, col.name=F, quote=F)

write.table (downGenes5, "down genes 5.txt", row.name=F, col.name=F, quote=F)

dev.off ()

topGenes = head (order (res$padj),100)

write.table (res[topGenes, ], "results DESeq 100topGenes.txt",sep="\t",quote=F,row.

name=T)

# raise logFC threshold
res.FC2 = results(dds,lfcThreshold=2)

res.FC5 = results(dds,lfcThreshold=5)

# plotMA topGene in graphics

pdf ("plotMA resFC2 topGene.pdf")

plotMA (res.FC2,ylim=c(-15,15))

topGene = rownames (res.FC2) [which.min (res.FC2$padj) ]

with (res[topGene, ], {
points (baseMean, log2FoldChange, col="black", cex=2, lwd=2)
text (baseMean, log2FoldChange, topGene, pos=2,col="black")
})

Page 12 of 20



iGem Evry Team 2015 Bioinformatics
dev.off ()

pdf ("plotMA resFC5 topGene.pdf")

plotMA (res.FC5,ylim=c(-15,15))

topGene LCl = rownames (res.FC5) [which.min (res.FC5Spadj) ]

with (res[topGene, ], {
points (baseMean, log2FoldChange, col="black", cex=2, lwd=2)
text (baseMean, log2FoldChange, topGene, pos=2,col="black")
})

dev.off ()
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Variant discovery

What we produced:

- Bash script: quality control (filtering steps)

- Bash script: variant association analysis

- VCF files (before and after QC)

- Table: identified variants (exonic, non-synonymous)

Variant Calling on RNA-Seq
data

v

( )

Raw Variants e
L only

5 Filtering Steps

v

( )
Variants ready for analysis
Common variants only

\ J

Fisher’s exact test Logistic regression

532 exonic, non-
synonymous variants
p-value < 0.05

Figure: Schematic overview of the pipeline for variant discovery and evaluation

A) Variant calling

[Frangois]
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B) Quality control (filtering steps)

As recommended in the GATK Best Practices Guideline for variant discovery using RNA-Seq data,
we applied hard filters to the raw variants obtained after variant calling, in an attempt to optimise
both high sensitivity and specificity.

Furthermore, as we only have 4 samples, we decided to use quite stringent parameters /
thresholds to filter the data, hoping to retain “true” and of as high a quality as possible variants.
Filtering was performed using scripts from GATK and VCFtools.

Filters:
(1) Diallelic variants only.

(2) Hardy-Weinberg equilibrium (HWE) deviation test. It is a common practice to remove sites
that deviate from HWE because the deviation can be caused by genotyping errors. Normally, for
case-control data, only controls should be tested for deviation from HWE (because for cases, sites
associated with disease status can deviate from HWE). In our case, as all tests were performed in
a bidirectional manner, deviation from HWE was tested in all the samples and we excluded sites

with a HWE p-value < 1.10 "~

(3) Call rate (percentage of samples with a non-missing genotype, CR). The proportion of
missing genotypes is an useful indicator of poor genotype quality. We decided to keep variants with
a CR > 98%, which allows to keep good quality variants only. As mean CR in raw data was of
about 64%, we discarded over 60% of variants using this filter.

(4) Filtering based on Fisher Strand values (FS > 30.0) and Quality by Depth (QD < 2.0), as well
as filtering out clusters of at least 3 SNPs in a window of 35 bases between them.

In order to assess the quality gain at each QC step, we estimated the ratio of transitions (Ti, purine
to purine or pyrimidine to pyrimidine mutation) to transversions (Tv, purine to pyrimidine or vice
versa) in the identified single nucleotide variants (SNVs). Particularly in coding regions, a higher
number of transitions is expected, as transversions are more likely to change the underlying amino
acid and lead to a deleterious mutation. Ti/Tv ratios are an approximate measure of quality: higher
Ti/Tv ratios are associated with lower false positives.

8e+05
]
T
2.40

6e+05
|

# variants
Ti/TV ratio
2.35

4e+05
|

2e+05
|

T
2.30

0e+00
L

Raw data Diallelic HWE p-value CR 98%

QC steps

Figure: Number of variants retained and Ti/Tv ratio for every QC step
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meanQUAL

QC_stage Call Rate

Raw_data 868330

Diallelic_only 868037 0.69 2280 98

HWE_pvalue 868037 0.69 2280 98

294034 | 1 | 2423 | 223

C) Annotation

Annotation attributes such as genomic region, gene name, variant type and consequence are
attached to the variants list according to the reference hg19 using ANNOVAR (AnnotateVariation
perl script). The primary genomic effects that are annotated include splice sites, nonsense, non-
synonymous and synonymous variants.

D) Association testing between individual variants and phenotypic traits (i.e control / cancerous
cells)

Here, common variants were defined as being those that are present in more than one sample. Of
the 294 034 variants retained after quality control, 233 294 were identified as common. We
identified 24 347 exonic variants only, over 19 000 of these were common. Thus, we decided to
work only on common variants.

We performed standard single variant test to assess association: logistic regression and fisher’s
exact test.

We found 531 exonic non-synonymous variants having a Fisher’s p-value < 0.05 (p = 0.02, being

the lowest value we could get with 4 samples). 315 of these variants were only present in the
melanoma cell lines (all were homozygous variants).

E) Script

a. Filtering steps
FHEFFFAAAAAAAAA ARG ddH 444

### Variant Filtering 44
### Hard filters -> optimize both high sensitivity ###
### and specificity together ; #H#4
### !'!! some real sites will get filtered out !!! ###
##4 ##4
#4#4# v1.0 15/09/2015 ##4

SRR R AR AR AR R AR R R R R R R R R R RS

#1) Keep diallelic variants only

/path/to/bin/vcftools --vcf melanocytes melanomes var.vcf --min-alleles 2 --max-
alleles 2 --recode --out N _C diallelic

#2) Annotation, beforeQC

java -Xmx32g -jar /path/to/snpEff.jar -v GRCh37.75 N C diallelic.recode.vcf >
N C diallelic annot.vcf

# annotate unknown variants only (unknown as not reported in dbSNP)

java -jar /path/to/SnpSift.jar annotate -dbsnp N C diallelic.recode.vcf >
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bQC dbsnp.vcf

java -Xmx4g -jar /path/to/snpEff.jar eff -v GRCh37.75 bQC dbsnp.vcf >
bQC_eff.vcf

java -jar /path/to/SnpSift.jar filter -f bQC eff.vcf "! exists ID" >

bQC eff not in dbSnp.vctE

java -Xmx32g -jar /path/to/snpEff.jar eff -v GRCh37.75 bQC eff not in dbSnp.vcf
> bQC not in db_annot.vct

#3) High Quality variants (CR>98% and HWE p > 10-7)

./vcftools 0.1.13/bin/vcftools --vcf N C diallelic.recode.vcf --hwe 0.0000001 --
recode --out N C HF hwe

./vecftools 0.1.13/bin/vcftools --vcf N C HF hwe.recode.vcf --max-missing 0.98 --
recode --out N C CR98

#4) GATK filters (as in BEST PRACTICES for RNAseq data and variant calling)

# Filtering based on Fisher Strand values and Qual by Depth
# Filter out clusters of at least 3 SNPs in a window of 35 bases between them

java -jar GenomeAnalysisTK.jar -T VariantFiltration -R hg 19.fasta -V
N C CR98.recode.vcf -window 35 -cluster 3 -filterName FS -filter "FS > 30.0" -
filterName QD -filter "QD < 2.0" -o afterQC variants.vcf

#5) Annotation, afterQC

java -Xmx32g -jar /path/to/snpEff.jar -v GRCh37.75 afterQC variants.vcf >
afterQC variants annot.vcf

b. Variant evaluation

##### PIPELINE VARIANT ANALYSIS #####
##### python - variant tools FHHH#

## vtools project set-up ##
# initialize project and import vcf file with variant calls

vtools init proj
vtools import N C CR98.recode.vcf --build hgl9 --var info AA AC AN DP --
geno_info DP geno

# import phenotypes
# phone.txt is a tab separated file: column 1 = sample name ; column 2 =
#phenotype N (controls) or C (cancerous cells)

vtools phenotype --from file pheno.txt

# ANNOVAR annotations

# i1if necessary, download database

#/path/to/annovar/annotate variation.pl --downdb refGene /path/to/annovar/
humandb/ -build hgl?9

vtools export variant --output ANNOVAR.input --format ANNOVAR
perl /path/to/annovar/annotate variation.pl -geneanno ANNOVAR.input -buildver
hgl9 /path/to/annovar/humandb/

vtools update variant --format ANNOVAR exonic variant function --from file
ANNOVAR.input.exonic variant function --var info mut type function genename
vtools update variant --format ANNOVAR variant function --from file

ANNOVAR.input.variant function --var info region type region name

Page 17 of 20



iGem Evry Team 2015 Bioinformatics

# annotation: refGene, dbSNP

vtools use refGene
vtools use dbSNP

# alternative allele frequency calculations

vtools update variant --from stat 'total ie=#(GT)' 'num ie=#(alt)'
'het ie=#(het)' 'hom ie=# (hom)' 'other ie=# (other)' 'num var=# (mutGT)'
vtools update variant --set 'af ie=num ie/(total ie * 2.0)'

### creating variant subsets
vtools select variant "af ie > 0.005" -t variants "variant table (MAF>0.5%)”

# usually, RV defined as having MAF < 5%
# here, working with 4 samples, RV defined as having MAF < 25%

#vtools select variants "af ie<=0.05 AND af ie > 0.005" -t rare var "rare
variants defined as having a MAF<5%"
#vtools select variants "af ie > 0.05" -t com var "common variants defined as

having a MAF>5%"

vtools select variants "af ie<=0.25 AND af ie > 0.005" -t rare var "rare
variants defined as having a MAF<25%"
vtools select variants "af ie > 0.25" -t com var "common variants defined as

having a MAF>25%"
# non-synonymous variants only

vtools select variants "mut type like 'nonsynonymous%' OR mut type like
'stoploss%' OR mut type like 'stopgain%' OR mut type like 'splicing%' OR
mut type like 'frameshift%' OR mut type like 'nonframeshift%'" -t fvar

vtools select rare var "mut type like 'nonsynonymous%' OR mut type like
'stoploss%' OR mut type like 'stopgain%' OR mut type like 'splicing%' OR

mut type like 'frameshift%' OR mut type like 'nonframeshift%'" -t rare fvar
"nonsynonymous, stoploss, stopgain, splicing and indel variants selected from
table rare var"

o

vtools select com var "mut type like 'nonsynonymous%' OR mut type like 'stoploss
%' OR mut type like 'stopgain%' OR mut type like 'splicing%' OR mut type like
'frameshift%' OR mut type like 'nonframeshift%'" -t com fvar "nonsynonymous,

stoploss, stopgain, splicing and indel variants selected from table com var"
# exonic variants only

vtools select variants "region type = 'exonic' OR region type =
'exonic;splicing' OR region type = 'ncRNA exonic'" -t exo var "exonic variants
from table variant"

vtools select rare var "region type = 'exonic' OR region type =
'exonic;splicing' OR region type = 'ncRNA exonic'" -t exo RV "exonic variants
from table rare var"

vtools select com var "region type = 'exonic' OR region type = 'exonic;splicing'
OR region type = 'ncRNA exonic'" -t exo CV "exonic variants from table comm var"

vtools select fvar "region type = 'exonic' OR region type = 'exonic;splicing' OR
region type = 'ncRNA exonic'" -t exo fvar "exonic variants from table fvar"

vtools select rare fvar "region type = 'exonic' OR region type =
'exonic;splicing' OR region type = 'ncRNA exonic'" -t exo fRV "exonic variants
from table rare fvar"

vtools select com fvar "region type = 'exonic' OR region type =
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'exonic;splicing' OR region type = 'ncRNA exonic'" -t exo fCV "exonic variants
from table com fvar"

#4444 4444 Assoclation testing ########4#
## COMMON variants

# Fisher's exact test

vtools update variant --from stat 'num gt case=# (GT)'

'num var alleles case=#(alt)' --samples "phenotype = 2 "

vtools update variant --from stat 'num gt ctrl=#(GT)'

'num var alleles ctrl=#(alt)' --samples "phenotype = 1 "

vtools update variant --set "prop pval=Fisher exact(num var alleles case,

num var alleles ctrl, 2*num gt case, 2*num gt ctrl)'
vtools output com var \
chr pos ref alt refGene.name2 refGene.cdsStart refGene.cdsEnd refGene.strand \

mut type region type num var alleles case num var alleles ctrl het ie hom ie
prop pval \

--header CHR POS REF ALT GENE CDS_START CDS END STRAND \

MUT TYPE REGION NUM VAR ALLELES C NUM VAR ALLELES N NUM HTZ NUM HMZ PVAL FISHER
> pval CV fisher.txt

# Logistic regression
vtools associate com var phenotype \
--discard variants "% (NA)>0.1" \
--method "LogitRegBurden --name logReg --alternative 2" \
--group by refGene.name2 \
--to_db logReg CV \

-j8 > logReg CV.txt
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