
Week 1: 8. June 2015 - 12. June 2015

8. June 2015:

- 1) Amplification of hps, phi and medh2 for TOPO cloning.
 - Pipetting scheme and PCR program according to PCR with Phusion-HF DNA Polymerase Protocol
 - Primer: hps_P1/P2; phi_P1/P2; medh2_P1/P2
 - Template: Genomic DNA from *Bacillus methanolicus* [100 ng/µl]

Figure 1: Amplification of *hps*, *phi* and *medh2* for TOPO cloning. 20 μl of PCR were checked on 1% (w/v) agarose gel. Expected sizes: *hps*-826 bp, *phi*-988 bp, *medh2*-1936 bp. As ladder (L) 1kB Ladder (NEB) was used.

- 2) Liquid culture for growth of Methylococcus capsulatus (Bath)
 - Inoculate a 30 ml culture of Methylococcus capsulatus Bath
 - Use 22.5 ml NMS media and add 7.5 Methanol as a carbon source
 - Incubate for 4 days at 37 °C

9. June 2015

- 1) Purification of generated hps, phi and medh2 PCR products for TOPO cloning
 - Using Wizard® SV Gel and PCR Clean-Up System (Promega) and following the provided manual.
- 2) TOPO cloning of hps, phi and medh2 into pCR4 Vector
 - Using the Zero Blunt Topo cloning Kit (Invitrogen)
 - See TOPO cloning protocol for pipetting scheme
- 3) Transformation of *E. coli* TOP10 cells with TOPO cloning reactions
 - Add 2 µl of TOPO reaction to chemically competent *E. coli* TOP10 cells.
 - Following the protocol for transformation of chemical competent *E. coli* cells
 - Plate on LB+Amp [100 μg/ml] and incubate overnight at 37 °C

10. June 2015

- Transformation was successful and colonies were grown on the plate.
- 1) Colony-PCR to screen for clones containing the TOPO constructs
 - Constructs: pCR4+hps, pCR4+phi, pCR4+medh2
 - Pipetting scheme and PCR program according to PCR with Taq-DNA Polymerase Protocol
 - Primer: hps P1/P2, phi P1/P2, medh2 P1/P2
 - Check 6 Clones per construct
 - Positive Control: add 1 µl of PCR product of hps, phi and medh2
 - Negative Control: add 1 µl MilliQ Water

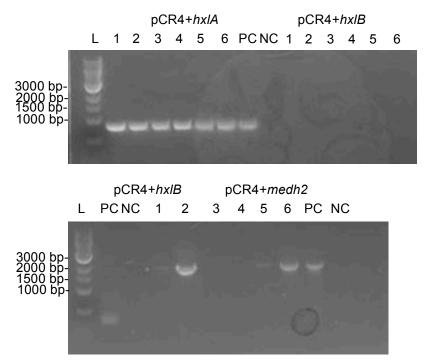
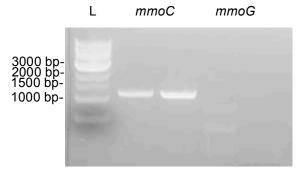


Figure 2: Colony-PCR to identify clones containing TOPO constructs. Numbers 1-6 determine the checked clone. As positive control (PC) 1 μl PCR fragment was added. As negative control (NC) 1 μl MilliQ Water was added. 10 μl of PCR were analzyed on 1 % (w/v) agarose gel. Expected sizes: *hps*-826 bp, *phi*- 988 bp, *medh2*-1936 bp. As ladder (L) 1 kB Ladder was used.


2) <u>Inoculate liquid culture for plasmid isolation of pCR4+hps, pCR4+phi and pCR4+medh2</u>

Inoculate clone 1 for plasmid isolation of pCR4+hps and clone 2 for plasmid isolation of pCR4+medh2 with 5 ml LB+Amp [100 μg/ml] and incuabte at 37 °C overnight shaking at 220 rpm.

Although the Colony-PCR did not show positive pCR4+phi clones, we inoculated clone 3 with 5 ml LB+Amp [100 μg/ml], because also our positive control did not work, so we assumed a problem with the PCR reaction.

11. June 2015

- 1) Plasmid Isolation of pCR4+hps, pCR4+phi and pCR4+medh2
 - Use the QIAprep Spin Miniprep Kit (Qiagen) and follow the provided manual.
- 2) Amplification of mmoC and mmoG for TOPO cloning
 - Pipetting scheme and PCR program according to PCR with Phusion-HF DNA Polymerase Protocol
 - Primer: mmoC_P1/P2, mmoG_P1/P2
 - Template: 1 µl of Methylococcus capsulatus liquid culture

Figure 3: Amplification of *mmoC* **and** *mmoG* **for TOPO cloning.** 20 μl of PCR were checked on 1% (w/v) agarose gel. Expected sizes: *mmoC*-1142 bp and *mmoG*-2249 bp. As ladder (L) 1kB Ladder (NEB) was used.

12. June 2015

Plasmids from iGEM2014 Team Braunschweig arrived. Each Plasmid consists
of one gene encoding for the sMMO subunit (mmoXYZBCD) in the pSC1B3
vector backbone.

Sequencing Reactions

- Send Plasmids pCR4+hps, pCR4+ phi and pCR4+medh2 for sequencing.
 - Correct sequence of all cloned genes confirmed.
- Send Plasmids pSC1B3+ sMMO subunit gene for sequencing.
 - pSC1B3+mmoY contains a point mutation changing the codon GGT into GGC. Both codons encode the aminoacid Glycin.
 - Correct sequence of all other sMMO subunits confirmed.