Difference between revisions of "Team:CHINA CD UESTC/Design"

 
(82 intermediate revisions by 7 users not shown)
Line 5: Line 5:
 
<head></head>
 
<head></head>
  
<style type="text/css">
+
    <style type="text/css">
 
/*************************************************
 
/*************************************************
whole right section
+
                whole right section
  
 
***********************************************/
 
***********************************************/
 
#RightSection {
 
#RightSection {
position: fixed;
+
    position: fixed;
left: 260px;
+
    left: 260px;
top: 0;
+
    top: 0;
right: 0;
+
    right: 0;
height:100%;
+
    height:100%;
background:#F0F0F0;
+
    background:#F0F0F0;
background-image:url("https://static.igem.org/mediawiki/2015/8/8e/CHINA_CD_UESTC_PROJECTbg.jpg");
+
    background-image:url("https://static.igem.org/mediawiki/2015/8/8e/CHINA_CD_UESTC_PROJECTbg.jpg");
overflow-y: scroll;
+
    overflow-y: scroll;
background-repeat: repeat;
+
    background-repeat: repeat;
background-size: 180px;
+
    background-size: 180px;
transition: all 200ms ease-out;
+
    transition: all 200ms ease-out;
transform: translate3d(0, 0, 0);
+
    transform: translate3d(0, 0, 0);
z-index:1;
+
    z-index:1;
  
 
}
 
}
Line 30: Line 30:
 
     padding: 40px 0 12px 0;
 
     padding: 40px 0 12px 0;
 
}
 
}
#project_threeline {
 
width: 100%;
 
}
 
#project_threeline img {
 
border: 10px solid #fff;
 
    box-shadow: 1px 1px 3px rgba(24, 31, 3, 0.29);
 
  
}
 
#project_left {
 
float: left;
 
width: 33%;
 
}
 
#project_middle {
 
float: left;
 
margin-left: 90px;
 
width: 17%;
 
}
 
#project_right {
 
float: right;
 
margin-right: 110px;
 
width: 16%;
 
}
 
  
 
</style>
 
</style>
 
<body id="homeIndexBody">
 
<body id="homeIndexBody">
  
<div id="RightSection"></div>
+
    <div id="RightSection"></div>
 
+
<div id="title">
+
 
+
<div id="firstTitle">
+
<p>
+
<B>DESIGN</B>
+
</p>
+
</div>
+
</div>
+
 
+
<div id="RightContent">
+
<div class="transparent_class ">
+
<p class="blockWords">
+
&nbsp;&nbsp;We mainly designed three vectors respectively carrying <i>laccase</i>
+
+ mamW + RFP, mamAB and mamGFDC + mamXY + mms6. The purpose is to accomplish our magnetotactic <i>E.coli</i>
+
with laccase and put them into our enzyme bio-fuel cell (EBFC). let's have a detailed view in the design process.
+
</p>
+
</div>
+
 
+
<div id="RightContentText">
+
<div class="slide" id="slide2" data-slide="2" data-stellar-background-ratio="0.5" style="background-position: 0px 669px;">
+
<div class="container clearfix">
+
 
+
<div id="content" class="grid_12">
+
<h3>Overview</h3>
+
</div>
+
<div class="clear"></div>
+
 
+
<div id="content">
+
<div class="grid_8">
+
<p>
+
This summer, CHINA_CD_UESTC team made a high-efficiency <strong>enzymatic biofuel cell (EBFC)</strong> by constructing magnetotactic
+
<i>E.coli</i>
+
which can produce Laccase. In order to achieve this goal, we co-transferred a gene coding the fusion protein which connected Laccase with MamW. The protein MamW which is a magnetosome transmembrane protein as a connection between magnetosome and Laccase. Therefore, we can immobilize Laccase on the magnetosome membrane (MM). And we also transferred four operons –
+
<i>mamAB</i>
+
,
+
<i>mamGFDC</i>
+
,
+
<i>mamXY</i>
+
,
+
<i>mms6</i>
+
- which are related to magnetosome's formation into
+
<i>E.coli</i>
+
.
+
Once we put the magnetotactic
+
<i>E.coli</i>
+
which produce Laccase onto the cathode, can we utilize the magnetotaxis to gather oxidases which will efficiently improve the efficiency of EBFC. By this reason, we designed vectors and experimental process as three parts:
+
<i>mamW</i>
+
+
+
<i>RFP</i>
+
+
+
<i>Laccase</i>
+
,
+
<i>mamAB</i>
+
and
+
<i>mamGFDC</i>
+
+
+
<i>mamXY</i>
+
+
+
<i>mms6</i>
+
.
+
</p>
+
<p>
+
We designed an enzymatic biofuel cell (EBFC) schematic diagram as following which was our <strong>prototype</strong> of the project:
+
</p>
+
<div class="project_pic">
+
<p id="pic_title"></p>
+
<img src="https://static.igem.org/mediawiki/2015/f/f7/CHINA_CD_UESTC_DesignOverview.png" width="60%">
+
<p id="pic_illustration">
+
Figure 1. Schematic diagram of EBFC. At the anode, glucose is oxidized to gluconolactone, where the electrons are transferred from the GOX to CNT. Catalase decomposes hydrogen peroxide into oxygen and water. At the cathode, electrons are transferred from CNT to laccase where dioxygen is reduced to water.
+
</p>
+
</div>
+
 
+
</div>
+
</div>
+
</div>
+
</div>
+
<div class="slide" id="slide2" data-slide="2" data-stellar-background-ratio="0.5" style="background-position: 0px 669px;">
+
<div class="container clearfix">
+
 
+
<div id="content" class="grid_12">
+
<h3>RFP + Laccase</h3>
+
</div>
+
<div class="clear"></div>
+
 
+
<div id="content">
+
<div class="grid_8">
+
<p>
+
After a review of the relevant literature <sup>[1]</sup>
+
, we learned that in the previous bio-fuel cells, the applications of enzyme fuel cell is very wide, and magnetotactic bacteria can generate the magnetosome attracted by magnet. Thereby, we came up to the Laccase with oxidation, which can be put into the cell cathode. At the same time, we hope to use the reporter gene
+
<i>RFP</i>
+
to help locate and content the Laccase protein visualized. In addition, by changing the environment of Laccase, we can better understand its optimum environmental conditions used by the visualization of
+
<i>RFP</i>
+
. According to the principle of co-transformation, we designed the vector pACYCDuet-1, and we put together the genes of Laccase and
+
RFP
+
to the vector.
+
</p>
+
<div class="project_pic">
+
<p id="pic_title"></p>
+
<img src="https://static.igem.org/mediawiki/2015/1/12/CHINA_CD_UESTC_DESIGN_LACCASE02.png" width="60%">
+
<p id="pic_illustration"></p>
+
</div>
+
 
+
<p> <strong>The main role of each gene as follows:</strong>
+
</p>
+
<div class="list_txt">
+
<ul>
+
<li>
+
<p>
+
(1) <strong>Laccase:</strong>
+
Efficient oxidase, catalyzes the substrate to produce electrons, which can be used as a biological cathode in enzyme fuel cell and applied in batteries.
+
</p>
+
</li>
+
<li>
+
<p>
+
(2)
+
<strong>RFP:</strong>
+
The reporter protein which can locate and content the protein MamW visualized out of the vesicle membrane.
+
</p>
+
</li>
+
</ul>
+
</div>
+
  
<p>
+
    <div id="title">
After constructing this vector completely, we detected whether it work or not by the method of ABTS <sup>[2]</sup>
+
and got the positive result. Furthermore, we learned from literature
+
<sup>[3]</sup>
+
that
+
<i>mamW</i>
+
gene which located in magnetosome genome had the function of membrane localization.
+
<i>mamW</i>
+
was found in magnetic bodies outside the membrane vesicles, which can help Laccase immobilization. And
+
<i>mamW</i>
+
is related to the formation of magnetosome. Therefore, we would like to connect
+
<i>mamW</i>
+
to the working vector. However, the fusion expression of these three proteins may had a little difficult, which no one had studied and done before, so we designed the following two vectors:
+
</p>
+
<div class="project_pic">
+
<p id="pic_title">
+
(1) <i>mamW</i> +
+
<i>laccase</i>
+
: fixed the expressional Laccase in the cell cathode and verified whether MamW protein play a major role in the formation of magnetosome or not.
+
</p>
+
<img src="https://static.igem.org/mediawiki/2015/3/3d/CHINA_CD_UESTC_DESIGN_LACCASE04.png" width="60%">
+
<p id="pic_illustration"></p>
+
</div>
+
  
<div class="project_pic">
+
        <div id="firstTitle">
<p id="pic_title">
+
            <p>
(2) <i>mamW</i> + <i>RFP</i> +
+
                <B>DESIGN</B>
<i>laccase</i>
+
            </p>
: Based on the above vector, RFP protein also can locate and content the MamW protein visualized out of the vesicle membrane, while the contents and expression of Laccase.
+
        </div>
</p>
+
    </div>
<img src="https://static.igem.org/mediawiki/2015/9/90/CHINA_CD_UESTC_DESIGN_LACCASE01.png" width="60%">
+
<p id="pic_illustration"></p>
+
</div>
+
<p>
+
Wherein, <i>mamW</i> gene was amplified from the <strong><i>MSR-1</i></strong> extracted genomic by PCR. And <i>laccase</i> gene was obtained from <strong>BBa_K863005</strong> on the 2015 Kit Plate2. While the <i>RFP</i> gene was taken from <strong>BBa_E1010</strong> on the 2015 Kit Plate3.
+
</p>
+
<div class="reference">
+
<h4>Reference</h4>
+
<p>
+
[1] Serge Cosnier, Michael Holzinger, Alan Le Goff (2014). “Recent advances in carbon nanotube-based enzymatic fuel cells.” Bioengineering and Biotechnology 2:45, doi: 10.3389/fbioe.2014.00045
+
</p>
+
<p>
+
[2] Zhang Peng (2007). “Test method for the Laccase activity with ABTS as the substrate.” China Academic Journal Electronic Publishing House 24:1
+
</p>
+
<p>
+
[3] Isabel Kolinko, Anna Lohße, Sarah Borg, et al. (2014). “Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters.” Nature Nanotechnology 9: 193-197, doi:10.1038/nnano.2014.13
+
</p>
+
  
</div>
+
    <div id="RightContent">
</div>
+
        <div class="transparent_class ">
 +
            <p class="blockWords">
 +
                &nbsp;&nbsp;We mainly designed three vectors respectively carrying <i>mamW</i>
 +
                + <i>RFP</i>
 +
                + <i>laccase</i> ,
 +
                <i>mamAB</i>
 +
                and
 +
                <i>mamGFDC</i>
 +
                +
 +
                <i>mms6</i>
 +
                +
 +
                <i>mamXY</i>
 +
                . Our purpose is to accomplish our magnetotactic
 +
                <i>E.coli</i>
 +
                and fix the laccase on the magnetosome membrane. Finally we put the magnetosomes carrying laccases into our enzymatic bio-fuel cell (EBFC).
 +
            </p>
 +
        </div>
  
</div>
+
        <div id="RightContentText">
 +
            <div class="slide" id="slide2" data-slide="2" data-stellar-background-ratio="0.5" style="background-position: 0px 669px;">
 +
                <div class="container clearfix">
  
</div>
+
                    <div id="content" class="grid_12">
</div>
+
                        <h3>Overview</h3>
<div class="slide" id="slide2" data-slide="2" data-stellar-background-ratio="0.5" style="background-position: 0px 669px;">
+
                    </div>
<div class="container clearfix">
+
                    <div class="clear"></div>
  
<div id="content" class="grid_12">
+
                    <div id="content">
<h3>Construction of enzymatic biofuel cell (EBFC)</h3>
+
                        <div class="grid_8">
</div>
+
                            <p>
<div class="clear"></div>
+
                                This summer, CHINA_CD_UESTC team worked very hard in order to make a high-efficiency enzymatic biofuel cell (EBFC) by enriching the laccase on the cathode electrode.  We transferred four operons--
 +
                                <i>mamAB</i>
 +
                                ,
 +
                                <i>mamGFDC</i>
 +
                                ,
 +
                                <i>mamXY</i>
 +
                                and
 +
                                <i>mms6</i>
 +
                                , which were related to magnetosome formation into
 +
                                <i>E.coli.</i>
 +
                                the modified
 +
                                <i>E.coli</i>
 +
                                can produce laccase-carried magnetosome. Therefore, we could immobilize and enrich laccase on the cathode electrode by magnet. In our project, we improved previous <i>laccase</i> part (
 +
                                <a href="http://parts.igem.org/Part:BBa_K863005">BBa_K863005</a>
 +
                                ) and made it visible.
 +
                            </p>
 +
                            <P>
 +
                                The EBFC schematic diagram as following is the final <strong>prototype</strong>
 +
                                of our project(Figure 1):
 +
                            </P>
 +
                            <div class="project_pic">
 +
                                <p id="pic_title"></p>
 +
                                <img src="https://static.igem.org/mediawiki/2015/0/0b/CHINA_CD_UESTC_DESIGN_overview.png" width="70%">
 +
                                <p id="pic_illustration"> <strong>Figure 1</strong>
 +
                                    . Schematic diagram of our EBFC. On the anode, glucose is oxidized to gluconolactone, where the electrons are transferred from the GOX to CNT. On the cathode, laccase is immobilized and enriched on the electrode by magnetosome. Electrons are transferred from CNT to laccase where dioxygen is reduced to water.
 +
                                </p>
 +
                            </div>
  
<div id="content">
+
                        </div>
<div class="grid_8">
+
                    </div>
<p>
+
                </div>
As we conceived the prototype of EBFC and read the literature of constructing EBFC
+
            </div>
<sup>[1]</sup>
+
            <div class="slide" id="slide2" data-slide="2" data-stellar-background-ratio="0.5" style="background-position: 0px 669px;">
, we prepared materials of components of our Laccase EBFC as following: (100ml)
+
                <div class="container clearfix">
</p>
+
<div class="project_pic">
+
<p id="pic_title"></p>
+
<img src="https://static.igem.org/mediawiki/2015/a/a8/CHINA_CD_UESTC-DesignPlus01.png" width="60%">
+
<p id="pic_illustration">Table 1. Components of the EBFC.</p>
+
</div>
+
<p>
+
We put large and rough surface area carbon paper (Fig. 2) on both anode and cathode in order to facilitate the attachment of Laccase. The implementation of functional prototype was not just the materials mentioned above, we also bought the Glucose (Fig. 3), got the Laccase as described above and bought the carbon paper. As we prepared everything already, we successfully constructed a basic EBFC.
+
</p>
+
<div id="project_threeline">
+
<div id="project_left">
+
<p id="pic_title"></p>
+
<img src="https://static.igem.org/mediawiki/2015/3/3b/CHINA_CD_UESTC-DesignPlus02.png" width="100%">
+
<p>Figure 2. Carbon papers on both anode and cathode.</p>
+
</div>
+
<div id="project_middle">
+
<img src="https://static.igem.org/mediawiki/2015/6/6d/CHINA_CD_UESTC-DesignPlus03.png" width="100%">
+
<p>
+
Figure 3. Glucose enriched on the anode.
+
</p>
+
</div>
+
<div id="project_right">
+
<img src="https://static.igem.org/mediawiki/2015/9/9d/CHINA_CD_UESTC-DesignPlus04.png" width="100%">
+
<p>
+
Figure 4. Laccase+RFP enriched on the cathode.
+
</p>
+
</div>
+
</div>
+
  
 +
                    <div id="content" class="grid_12">
 +
                        <h3>Visible laccase in EBFC</h3>
 +
                    </div>
 +
                    <div class="clear"></div>
  
 +
                    <div id="content">
 +
                        <div class="grid_8">
 +
                            <p>
 +
                                After a review of the relevant literature <sup>[1]</sup>
 +
                                , we learned that the laccase has advantages over other oxidases. Thereby, we chose the laccase as the enzyme for cathode. In order to make laccase visible, we designed a recombinant vector to fuse
 +
                                <i>RFP</i>
 +
                                with the <i>laccase</i>. And <i>laccase</i> gene was obtained from
 +
                                <a href="http://parts.igem.org/Part:BBa_K863005">BBa_K863005</a>
 +
                                on the 2015 Kit Plate2. While the
 +
                                <i>RFP</i>
 +
                                gene was taken from
 +
                                <a href="http://parts.igem.org/Part:BBa_E1010">BBa_E1010</a>
 +
                                on the 2015 Kit Plate3. We designed the vector piGEM-RL as below(Figure 2).After constructing the vectors completely, we detected whether it work or not by the method of ABTS <sup>[2]</sup> :
 +
                            </p>
 +
                            <div class="project_pic">
 +
                                <p id="pic_title"></p>
 +
                                <img src="https://static.igem.org/mediawiki/2015/1/12/CHINA_CD_UESTC_DESIGN_LACCASE02.png" width="60%">
 +
                                <p id="pic_illustration">
 +
                                    <strong>Figure 2.</strong>
 +
                                    Schematic of piGEM-RL construction. Laccase: efficient oxidase, catalyzes the substrate to produce electrons and environmentally friendly. RFP: the reporter protein.
 +
                                </p>
 +
                            </div>
 +
                            <p>The laccase can be used to construct a common EBFC as biological cathode. we conceived a prototype( Figure 3). In the EBFC, we used carbon paper which was full of carbon microfibers as electrode because it has good conductivity and large surface area. Glucose oxidase and RFP+laccase were chosed to catalyze reaction for producing electricity!
 +
                            </p>
 +
                            <div class="project_pic">
 +
                                <p id="pic_title"></p>
 +
                                <img src="https://static.igem.org/mediawiki/2015/f/f7/CHINA_CD_UESTC_DesignOverview.png" width="60%">
 +
                                <p id="pic_illustration">
 +
                                    <strong>Figure 3.</strong>
 +
                                    Schematic diagram of our EBFC. On the anode, glucose is oxidized to gluconolactone, where the electrons are transferred from the GOX to CNT. On the cathode, electrons are transferred from CNT to laccase where dioxygen is reduced to water.
 +
                                </p>
 +
                            </div>
  
 +
                            <p>
 +
                                The components of the EBFC are listed in the Table 1.
 +
                            </p>
 +
                            <div class="project_pic">
 +
                                <p id="pic_title"></p>
 +
                                <img src="https://static.igem.org/mediawiki/2015/a/a8/CHINA_CD_UESTC-DesignPlus01.png" width="70%">
 +
                                <p id="pic_illustration"></p>
 +
                            </div>
 +
                            <p>
 +
                                The <strong>main materials</strong> of our EBFC.
 +
                            </p>
 +
                            <p>The main materials of our EBFC(Figure 4). Carbon paper consists of carbon microfibers manufactured into flat sheets. It is used to help facilitates the reaction. Glucose oxidase oxidizes glucose into glucolactone. Electrons are released in the reaction.The fusion protein (RFP+laccase) transfers electrons to the terminal electron acceptor oxygen.
 +
                            </p>
 +
                            <div class="project_pic">
 +
                                <p id="pic_title"></p>
 +
                                <img src="https://static.igem.org/mediawiki/2015/3/3b/CHINA_CD_UESTC-DesignPlus02.png" width="60%">
 +
                                <p id="pic_illustration">
 +
                                    <strong>Figure 4. (A)</strong>
 +
                                    Carbon papers as the electrode.
 +
                                    <strong>(B)</strong>
 +
                                    Glucose oxidase on the anode.
 +
                                    <strong>(C)</strong>
 +
                                    RFP+laccase on the cathode.
 +
                                </p>
 +
                            </div>
  
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
            </div>
  
</div>
+
            <div class="slide" id="slide2" data-slide="4" data-stellar-background-ratio="0.5" style="background-position: 0px 669px;">
</div>
+
                <div class="container clearfix">
</div>
+
</div>
+
  
<div class="slide" id="slide2" data-slide="4" data-stellar-background-ratio="0.5" style="background-position: 0px 669px;">
+
                    <div id="content" class="grid_12">
<div class="container clearfix">
+
                        <h3>Express magnetosome in <i>E.coli</i> for immobilization</h3>
 +
                    </div>
 +
                    <div id="content">
 +
                        <div class="grid_8">
 +
                            <p>
 +
                                In order to immobilize and enrich laccase on the cathode pole, we want to connect laccase with magnetosome. Then the magnetosome carrying laccase can be attracted by magnet. First, we need to obtain lots of magnetosomes. In the magnetotactic bacteria, there are four steps to generate magnetosome
 +
                                <sup>[3]</sup>
 +
                                :1-invagination, 2-protein localization, 3-initiation of crystal mineralization, 4-crystal maturation. There exist four operons--
 +
                                <i>mamAB</i>
 +
                                ,
 +
                                <i>mamGFDC</i>
 +
                                ,
 +
                                <i>mamXY</i>
 +
                                and
 +
                                <i>mms6</i>
 +
                                , which are related to magnetosome formation.
 +
                            </p>
 +
                            <h4>1. <i>mamAB</i></h4>
 +
                            <p>
 +
                                This section describes the function of the vector piGEM-mamAB. It carries
 +
                                <i>mamAB</i>
 +
                                operon whose length is up to 17kb. Previous studies have shown that
 +
                                <i>mamAB</i>
 +
                                operon is one of the four core operons related to magnetosomes formation
 +
                                <sup>[4]</sup>
 +
                                . For consideration of the whole operon length (up to 17kb), compatibility and vector carrying capacity, we finally chose the vector pET-28a
 +
                                <sup>[5]</sup> as backbone. Accordingly, we put the
 +
                                <i>mamAB</i>
 +
                                operon into
 +
                                <i>E.coli</i>
 +
                                by the vector designed as followed:
 +
                            </p>
 +
                            <div class="project_pic">
 +
                                <img src="https://static.igem.org/mediawiki/2015/b/bc/CHINA_CD_UESTC_DESIGNmamAB01.png" width="50%">
 +
                                <p id="pic_illustration" style="text-align:center">
 +
                                    <strong>Figure 5.</strong>
 +
                                    Schematic of piGEM-AB construction.
 +
                                </p>
 +
                            </div>
  
<div id="content" class="grid_12">
+
                            <p>
<h3>mamAB</h3>
+
                                Since the length of
</div>
+
                                <i>mamAB</i>
<div class="clear"></div>
+
                                operon is up to 17kb, it is difficult to directly get its complete gene fragment. After studying the sequence, we divided
 +
                                <i>mamAB</i>
 +
                                operon into three parts which amplified from
 +
                                <strong><i>Magnetospirillum gryphiswaldense MSR-1</i></strong>
 +
                                , and connected together by the following steps:
 +
                            </p>
 +
                            <div class="project_pic">
 +
                                <p id="pic_title"></p>
 +
                                <img src="https://static.igem.org/mediawiki/2015/8/86/CHINA_CD_UESTC_DESIGNmamAB02.png" width="60%">
 +
                                <p id="pic_illustration" style="text-align:center">
 +
                                    <strong>Figure 6.</strong>
 +
                                    Schematic of the subclone method.
 +
                                </p>
 +
                            </div>
 +
                        </div>
 +
                    </div>
  
<div id="content">
+
                </div>
<div class="grid_8">
+
            </div>
<p>
+
In the magnetotactic bacteria, there are <strong>four steps to generate magnetosome</strong>
+
<sup>[1]</sup>
+
: 1-invagination, 2-protein localization, 3-initiation of crystal mineralization, 4-crystal maturation. Thus, in our project design, we constructed two vectors which responsible for implementing the further modification of the magnetosome formation.
+
</p>
+
<br>
+
<p>
+
This section will describe the function of the vector piGEM-mamAB. It carried mamAB operon which region up to 17kb located in MTB genome. Prior studies have shown that <i>mamAB</i> operon is not only one of the four core formation unit related to magnetosome, but also responsible for generating the basic structure of magnetic body
+
<sup>[2]</sup>
+
. Compared to those three operons which modified the formation of magnetosome, <i>mamAB</i> relatively independent to complete its work that produced a fairly complete magnetosome. Accordingly, we put this fatal functional unit <i>mamAB</i> into
+
<i>E.coli</i>
+
by the vector designed as following:
+
</p>
+
<div class="project_pic">
+
<img src="https://static.igem.org/mediawiki/2015/b/bc/CHINA_CD_UESTC_DESIGNmamAB01.png" width="50%">
+
<p id="pic_illustration"></p>
+
</div>
+
<p>
+
For consideration of the gene cluster size (17kb), compatibility and vector carrying capacity, we finally chose the backbone vector pET28a
+
<sup>[3]</sup>
+
.
+
</p>
+
<p>
+
Since <i>mamAB</i> operon lengthen out to 17kb, it is difficult to directly get its complete gene fragment for us. After studying their sequence, we divided <i>mamAB</i> operon into three parts which amplified by PCR from the genome of magnetotactic bacteria
+
<i>MSR-1</i>
+
, and connected together through the following steps:
+
</p>
+
<div class="project_pic">
+
<p id="pic_title"></p>
+
<img src="https://static.igem.org/mediawiki/2015/8/86/CHINA_CD_UESTC_DESIGNmamAB02.png" width="60%">
+
<p id="pic_illustration"></p>
+
</div>
+
<P>
+
As we preliminary verified our vector by means of enzyme digestion and sequencing, the results have shown that we have successfully connected the three gene fragments, and the vector was successfully constructed.
+
</P>
+
<div class="reference">
+
<h4>Reference</h4>
+
<p>
+
[1] Ana Carolina V. Araujo 1, Fernanda Abreu 1, Karen Tavares Silva 1,2, Dennis A. Bazylinski 3 and Ulysses Lins 1,* Magnetotactic Bacteria as Potential Sources of Bioproducts. Mar. Drugs 2015, 13, 389-430; doi:10.3390/md13010389
+
</p>
+
<p>
+
[2] Anna Lohße1, Susanne Ullrich1, Emanuel Katzmann1, Sarah Borg1, Gerd Wanner1, Michael Richter2,Birgit Voigt3, Thomas Schweder4, Dirk Schu¨ ler1*.Functional Analysis of the Magnetosome Island in Magnetospirillum gryphiswaldense: The mamAB Operon Is Sufficient for Magnetite Biomineralization
+
</p>
+
<p>
+
[3] Citation: Lee HY, Khosla C (2007) Bioassay-guided evolution of glycosylated macrolide antibiotics in Escherichia coli. PLoS Biol 5(2): e45. doi:10.1371/journal.pbio.0050045
+
</p>
+
</div>
+
</div>
+
</div>
+
  
</div>
+
            <div class="slide" id="slide2" data-slide="4" data-stellar-background-ratio="0.5" style="background-position: 0px 669px;">
</div>
+
                <div class="container clearfix">
  
<div class="slide" id="slide2" data-slide="4" data-stellar-background-ratio="0.5" style="background-position: 0px 669px;">
+
                    <div id="content">
<div class="container clearfix">
+
                        <div class="grid_8">
  
<div id="content" class="grid_12">
+
                            <h4>
<h3><i>mamGFDC</i> + <i>mamXY</i> + <i>mms6</i></h3>
+
                                2.
</div>
+
                                <i>mamGFDC</i>
<div class="clear"></div>
+
                                +
 +
                                <i>mamXY</i>
 +
                                +
 +
                                <i>mms6</i>
 +
                            </h4>
  
<div id="content">
+
                            <p>
<div class="grid_8">
+
                                Previous study have shown that although the exact mechanism is not completely understood, these three operons are indispensable in modifying the formation of the magnetosome. Therefore, we built them on one vector to explore its practical effect modification
<p>
+
                                <sup>[6]</sup>
In order to further study the formation mechanism of the magnetosome’s shape and size, and control them, we constructed the vector piGEM-G6X which including three important operons of magnetosome: <i>mamGFDC</i>, <i>mms6</i> and <i>mamXY</i>.
+
                                . Currently already known as following:
</p>
+
                            </p>
<br>
+
                            <div class="list_txt">
<p>
+
                                <ul>
Previous study have shown that although the exact mechanism is not completely understood, these three operons are indispensable in modifying the formation of the magnetosome. Therefore, we built them on one vector to explore its practical effect modification
+
                                    <li>
<sup>[1]</sup>
+
                                        <h5>
. Currently already known as following:
+
                                            1)
</p>
+
                                            <strong>
<div class="list_txt">
+
                                                <i>mamGFDC</i>
<ul>
+
                                            </strong>
<li>
+
                                           
<h5>1. <strong><i>mamGFDC</i></strong>:</h5>
+
                                        </h5>
<p>
+
                                        <p>
Crystal size and shape are mainly regulated by proteins encoded in the <i>mamCD</i> operon (composed of the genes <i>mamC</i>, <i>D</i>, <i>F</i>, and <i>G</i>) and its deletion also leads to a reduction of the size of the magnetite magnetosome crystals
+
                                            Crystal size and shape are mainly regulated by proteins encoded in the
<sup>[2]</sup>
+
                                            <i>mamGFDC</i>
</p>
+
                                            operon (composed of the genes
</li>
+
                                            <i>mamC, D, F,</i>
<li>
+
                                            and
<h5>2. <strong><i>mamXY</i></strong>:</h5>
+
                                            <i>G</i>
<p>
+
                                            ) and its deletion also leads to a reduction of the size of the magnetite magnetosome crystals
The <i>mamXY</i> operon encodes proteins related to the magnetosome membrane (<i>mamY</i>, <i>X</i>, <i>Z</i>, and <i>ftsZ</i>-like genes) and its deletion causes cells of Magnetospirillum to produce smaller magnetite particles with superparamagnetic characteristics
+
                                            <sup>[6,7]</sup>
<sup>[3,4]</sup>
+
                                            .
.
+
                                        </p>
</p>
+
                                    </li>
</li>
+
                                    <li>
<li>
+
                                        <h5>
<h5>3. <strong><i>mms6</i></strong>:</h5>
+
                                            2)
<p>
+
                                            <strong>
The <i>mms6</i> operon contains five genes (<i>mms6</i>, <i>mmsF</i>, <i>mgr4070</i>, <i>mgr4071</i>, and <i>mgr4074</i>)
+
                                                <i>mamXY</i>
<sup>[5]</sup>
+
                                            </strong>
that also appear to be involved in magnetite crystal shape and size.
+
                                           
</p>
+
                                        </h5>
</li>
+
                                        <p>
</ul>
+
                                            The
</div>
+
                                            <i>mamXY</i>
<p>
+
                                            operon encodes proteins related to the magnetosome membrane (
In brief, magnetosomes produced by MTB cannot form a chain without those three operons, which will extremely affect its magnetotaxis. So we decided to componentize the genes of this part. And finally we submitted two parts of related genes which are <strong>BBa_K1779100</strong> and <strong>BBa_K1779101</strong>.
+
                                            <i>mamY, X, Z</i>
</p>
+
                                            , and
<p>
+
                                            <i>ftsZ</i>
We chose pCDFDuet-1 as our vector, mainly for the following three considerations:
+
                                            -like genes) and its deletion causes cells of Magnetospirillum to produce smaller magnetite particles with superparamagnetic characteristics
</p>
+
                                            <sup>[8]</sup>
<div class="list_txt">
+
                                            .
<ul>
+
                                        </p>
<li>
+
                                    </li>
<h5>1. <strong>Compatibility</strong></h5>
+
                                    <li>
<p>
+
                                        <h5>
We need a total of three vectors into
+
                                            3)
<i>E. coli</i>
+
                                            <strong>
, so the vector we chose be able to co-transform with the vector pET28a and pACYCDuet-1.
+
                                                <i>mms6</i>
</p>
+
                                            </strong>
</li>
+
                                           
<li>
+
                                        </h5>
<h5>2. <strong>Origin</strong></h5>
+
                                        <p>
<p>We select the CDF ori as vector's replication origin.</p>
+
                                            The
</li>
+
                                            <i>mms6</i>
<li>
+
                                            operon contains five genes (
<h5>3. <strong>Carrying Capacity</strong></h5>
+
                                            <i>mms6, mmsF, mgr4070, mgr4071</i>
<p>
+
                                            , and
Due to the large size of the operon which is 10.4kb, the plasmid must capable to carry this size of gene.
+
                                            <i>mgr4074</i>
</p>
+
                                            )
</li>
+
                                            <sup>[9]</sup>
</ul>
+
                                            that also appear to be involved in magnetite crystal shape and size.
</div>
+
                                        </p>
<h4>The final design of vector is shown in the following figure:</h4>
+
                                    </li>
<div class="project_pic">
+
                                </ul>
<img src="https://static.igem.org/mediawiki/2015/a/a1/CHINA_CD_UESTC_DESIGN_GFDC01.png" width="50%">
+
                            </div>
<p id="pic_illustration"></p>
+
</div>
+
<P>
+
Meanwhile, in order to solve the problem that gene is too large to be directly obtained, we decided to get two gene fragments <i>mamXY</i> and <i>GFDC</i> + <i>mms6</i> from
+
<i>MSR-1</i>
+
genome. We respectively designed the method of gene obtain shown in the following figure. The last one, <i>mamW</i> was connected on the vector pCDFDuet-1.
+
</P>
+
<div class="project_pic">
+
<img src="https://static.igem.org/mediawiki/2015/0/00/CHINA_CD_UESTC_DESIGN_GFDC02.png" width="60%"></div>
+
<P>
+
As we preliminary verified our vector by means of enzyme digestion and sequencing, the results have shown that we have successfully connected the two gene fragments, and the vector was successfully constructed.
+
<br>
+
<br></P>
+
<div class="reference">
+
  
<h4>Reference</h4>
+
                            <p>
<p>
+
                                We need co-transfer the three vectors into
[1] Ana Carolina V. Araujo; Fernanda Abreu; Karen Tavares Silva; Dennis A. Bazylinski; Ulysses Lins. Magnetotactic Bacteria as Potential Sources of Bioproducts.Mar. Drugs 2015,13,389-430
+
                                <i>E. coli</i>
</p>
+
                                , so the vector we chose be able to co-transformation with the vector pET-28a and pACYCDuet-1 is pCDFDuet-1. The final design of vector is shown in the following figure:
<p>
+
                            </p>
[2] Scheffel, A.; Gärdes, A.; Grünberg, K.; Wanner, G.; Schüler, D. The major magnetosome proteins MamGFDC are not essential for magnetite biomineralization in Magnetospirillum gryphiswaldense but regulate the size of magnetosome crystals. J. Bacteriol. 2008, 190, 377–386
+
                            <div class="project_pic">
</p>
+
                                <img src="https://static.igem.org/mediawiki/2015/a/a1/CHINA_CD_UESTC_DESIGN_GFDC01.png" width="50%">
<p>
+
                                <p id="pic_illustration" style="text-align:center">
[3] Lohße, A.; Ullrich, S.; Katzmann, E.; Borg, S.; Wanner, G.; Richter, M.; Voigt, B.; Schweder, T.; Schüler, D. Functional analysis of the magnetosome island in Magnetospirillum gryphiswaldense: The mamAB operon is sufficient for magnetite biomineralization. PLoS One 2011, 6, doi:10.1371/journal.pone.0025561
+
                                    <strong>Figure 7.</strong>
</p>
+
                                    Schematic of piGEM-G6X construction.
 +
                                </p>
 +
                            </div>
 +
                            <P>
 +
                                We decided to get two gene fragments
 +
                                <i>mamXY</i>
 +
                                and
 +
                                <i>mamGFDC</i>
 +
                                +
 +
                                <i>mms6</i>
 +
                                from
 +
                                <i><strong>Magnetospirillum gryphiswaldense MSR-1</strong></i>
 +
                                genome. We respectively designed the method of gene obtain shown in the following figure:
 +
                            </P>
 +
                            <div class="project_pic">
 +
                                <img src="https://static.igem.org/mediawiki/2015/0/00/CHINA_CD_UESTC_DESIGN_GFDC02.png" width="60%">
 +
                                <p id="pic_illustration" style="text-align:center">
 +
                                    <strong>Figure 8</strong>
 +
                                    . Schematic of the piGEM-G6X construction method.
 +
                                </p>
  
<p>
+
                            </div>
[4] Ding, Y.; Li, J.; Liu, J.; Yang, J.; Jiang, W.; Tian, J.; Li, Y.; Pan, Y.; Li, J. Deletion of the ftsZ-like gene results in the production of superparamagnetic magnetite magnetosomes in Magnetospirillum gryphiswaldense. J. Bacteriol. 2010, 192, 1097–1105
+
</p>
+
<p>
+
[5] Murat, D.; Quinlan, A.; Vali, H.; Komeili, A. Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proc. Natl. Acad. Sci. USA 2010, 107, 5593–5598
+
</p>
+
</div>
+
</div>
+
</div>
+
  
</div>
+
                            <h4>3. Connection magnetosome with laccase</h4>
</div>
+
                            <div class="clear"></div>
<div class="slide" id="slide2" data-slide="4" data-stellar-background-ratio="0.5" style="background-position: 0px 669px;">
+
                            <p>
<div class="container clearfix">
+
                                Meanwhile, in order to make laccase enriched, we designed a recombinant vector to fuse express <i>mamW</i> and <i>RFP</i> with the <i>laccase</i>. The protein MamW, a magnetosome transmembrane protein, can connect laccase and magnetosome. The RFP reporter can make the novel structure visible. So we designed the vector piGEM-WRL. As the vector will be co-transferred with another two vectors, we chose the pACYCDuet-1 as the backbone.
 +
                            </p>
 +
                            <div class="project_pic">
 +
                                <img src="https://static.igem.org/mediawiki/2015/9/90/CHINA_CD_UESTC_DESIGN_LACCASE01.png" width="60%">
 +
                                <p id="pic_illustration">
 +
                                    <strong>Figure 9.</strong> Schematic of piGEM-WRL construction. The protein MamW is a magnetosome transmembrane protein<sup>[10]</sup>, <i>mamW</i> gene was amplified from the <strong><i>Magnetospirillum gryphiswaldense MSR-1</i></strong>
 +
                                </p>
 +
                            </div>
 +
<p>In a word, we wanted to fix laccase on magnetosome membrane, and utilize the magnetotaxis of magnetosome to enrich laccase on the cathode.  </p>
 +
                            <div class="reference">
 +
                                <h4>Reference</h4>
 +
                                <p>
 +
                                    [1] Cosnier S, Holzinger M, Goff A L, et al. Recent advances in carbon nanotube-based enzymatic fuel cells.[J]. Frontiers in Bioengineering & Biotechnology, 2014, 2:45.
 +
                                </p>
 +
                                <p>
 +
                                    [2] Zhang P. Test method for the laccase activity with ABTS as the substrate[J]. Textile Auxiliaries, 2007.
 +
                                </p>
 +
                                <p>
 +
                                    [3] Lohsse A, Ullrich S, Katzmann E, et al. Functional Analysis of the Magnetosome Island in Magnetospirillum gryphiswaldense: The mamAB Operon Is Sufficient for Magnetite Biomineralization[J]. Plos One, 2011, 6(10):: e25561.
 +
                                </p>
 +
                                <p>
 +
                                    [4] Lohsse A, Ullrich S, Katzmann E, et al. Functional Analysis of the Magnetosome Island in Magnetospirillum gryphiswaldense: The mamAB Operon Is Sufficient for Magnetite Biomineralization[J]. Plos One, 2011, 6(10):: e25561.
 +
                                </p>
 +
                                <p>
 +
                                    [5] Lee H Y, Khosla C. Bioassay-Guided Evolution of Glycosylated Macrolide Antibiotics in Escherichia coli[J]. Plos Biology, 2007, 5(2):e45-e45.
 +
                                </p> 
 +
                               
 +
                                <p>
 +
                                    [6] Araujo A C, Abreu F, Silva K T, et al. Magnetotactic Bacteria as Potential Sources of Bioproducts[J]. Marine Drugs, 2015, 13(1):389-430.
 +
                                </p>
 +
                                <p>
 +
                                    [7] Scheffel A, Gärdes A, Grünberg K, et al. The major magnetosome proteins MamGFDC are not essential for magnetite biomineralization in Magnetospirillum gryphiswaldense but regulate the size of magnetosome crystals[J]. Journal of bacteriology, 2008, 190(1): 377-386.
 +
                                </p> 
  
<div id="content" class="grid_12">
+
                                <p>
<h3>The promoter verification</h3>
+
                                    [8] Ding Y, Li J, Liu J, et al. Deletion of the ftsZ-like gene results in the production of superparamagnetic magnetite magnetosomes in Magnetospirillum gryphiswaldense.[J]. Journal of Bacteriology, 2010, 192(4):1097-1105.
</div>
+
                                </p>
<div class="clear"></div>
+
                                <p>
 +
                                    [9] Dorothée M, Anna Q, Hojatollah V, et al. Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle[J]. Proceedings of the National Academy of Science, 2010, 107(12):5593-5598.
 +
                                </p>
  
<div id="content">
+
                                <p>
<div class="grid_8">
+
                                    [10]Kolinko I, Lohße A, Borg S, et al. Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters[J]. Nature nanotechnology, 2014, 9(3): 193-197.
<p>
+
                                </p>
In order to find the reason why the magnetosome was not formed in the <i>E.coli</i>, we constructed several vectors to investigate the operons’ promoters. We chose pSB1C3 as backbone, and replaced the <i>PlacI</i> of the part <a href="http://parts.igem.org/Part:BBa_J04450">BBa_J04450 </a>or replaced <i>RFP</i> which was the first genes of every operons.
+
                            </div>
</p>
+
                        </div>
<div class="project_pic">
+
                    </div>
<img src="https://static.igem.org/mediawiki/2015/e/e6/CHINA_CD_UESTC-DesignPlus05.png" width="50%">
+
<p id="pic_illustration"></p>
+
</div>
+
</div>
+
</div>
+
  
</div>
+
                </div>
</div>
+
            </div>
</div>
+
        </div>
</div>
+
    </div>
  
 
</body>
 
</body>
  
 
</html>
 
</html>

Latest revision as of 02:31, 19 September 2015

<!DOCTYPE html>

DESIGN

  We mainly designed three vectors respectively carrying mamW + RFP + laccase , mamAB and mamGFDC + mms6 + mamXY . Our purpose is to accomplish our magnetotactic E.coli and fix the laccase on the magnetosome membrane. Finally we put the magnetosomes carrying laccases into our enzymatic bio-fuel cell (EBFC).

Overview

This summer, CHINA_CD_UESTC team worked very hard in order to make a high-efficiency enzymatic biofuel cell (EBFC) by enriching the laccase on the cathode electrode. We transferred four operons-- mamAB , mamGFDC , mamXY and mms6 , which were related to magnetosome formation into E.coli. the modified E.coli can produce laccase-carried magnetosome. Therefore, we could immobilize and enrich laccase on the cathode electrode by magnet. In our project, we improved previous laccase part ( BBa_K863005 ) and made it visible.

The EBFC schematic diagram as following is the final prototype of our project(Figure 1):

Figure 1 . Schematic diagram of our EBFC. On the anode, glucose is oxidized to gluconolactone, where the electrons are transferred from the GOX to CNT. On the cathode, laccase is immobilized and enriched on the electrode by magnetosome. Electrons are transferred from CNT to laccase where dioxygen is reduced to water.

Visible laccase in EBFC

After a review of the relevant literature [1] , we learned that the laccase has advantages over other oxidases. Thereby, we chose the laccase as the enzyme for cathode. In order to make laccase visible, we designed a recombinant vector to fuse RFP with the laccase. And laccase gene was obtained from BBa_K863005 on the 2015 Kit Plate2. While the RFP gene was taken from BBa_E1010 on the 2015 Kit Plate3. We designed the vector piGEM-RL as below(Figure 2).After constructing the vectors completely, we detected whether it work or not by the method of ABTS [2] :

Figure 2. Schematic of piGEM-RL construction. Laccase: efficient oxidase, catalyzes the substrate to produce electrons and environmentally friendly. RFP: the reporter protein.

The laccase can be used to construct a common EBFC as biological cathode. we conceived a prototype( Figure 3). In the EBFC, we used carbon paper which was full of carbon microfibers as electrode because it has good conductivity and large surface area. Glucose oxidase and RFP+laccase were chosed to catalyze reaction for producing electricity!

Figure 3. Schematic diagram of our EBFC. On the anode, glucose is oxidized to gluconolactone, where the electrons are transferred from the GOX to CNT. On the cathode, electrons are transferred from CNT to laccase where dioxygen is reduced to water.

The components of the EBFC are listed in the Table 1.

The main materials of our EBFC.

The main materials of our EBFC(Figure 4). Carbon paper consists of carbon microfibers manufactured into flat sheets. It is used to help facilitates the reaction. Glucose oxidase oxidizes glucose into glucolactone. Electrons are released in the reaction.The fusion protein (RFP+laccase) transfers electrons to the terminal electron acceptor oxygen.

Figure 4. (A) Carbon papers as the electrode. (B) Glucose oxidase on the anode. (C) RFP+laccase on the cathode.

Express magnetosome in E.coli for immobilization

In order to immobilize and enrich laccase on the cathode pole, we want to connect laccase with magnetosome. Then the magnetosome carrying laccase can be attracted by magnet. First, we need to obtain lots of magnetosomes. In the magnetotactic bacteria, there are four steps to generate magnetosome [3] :1-invagination, 2-protein localization, 3-initiation of crystal mineralization, 4-crystal maturation. There exist four operons-- mamAB , mamGFDC , mamXY and mms6 , which are related to magnetosome formation.

1. mamAB

This section describes the function of the vector piGEM-mamAB. It carries mamAB operon whose length is up to 17kb. Previous studies have shown that mamAB operon is one of the four core operons related to magnetosomes formation [4] . For consideration of the whole operon length (up to 17kb), compatibility and vector carrying capacity, we finally chose the vector pET-28a [5] as backbone. Accordingly, we put the mamAB operon into E.coli by the vector designed as followed:

Figure 5. Schematic of piGEM-AB construction.

Since the length of mamAB operon is up to 17kb, it is difficult to directly get its complete gene fragment. After studying the sequence, we divided mamAB operon into three parts which amplified from Magnetospirillum gryphiswaldense MSR-1 , and connected together by the following steps:

Figure 6. Schematic of the subclone method.

2. mamGFDC + mamXY + mms6

Previous study have shown that although the exact mechanism is not completely understood, these three operons are indispensable in modifying the formation of the magnetosome. Therefore, we built them on one vector to explore its practical effect modification [6] . Currently already known as following:

  • 1) mamGFDC

    Crystal size and shape are mainly regulated by proteins encoded in the mamGFDC operon (composed of the genes mamC, D, F, and G ) and its deletion also leads to a reduction of the size of the magnetite magnetosome crystals [6,7] .

  • 2) mamXY

    The mamXY operon encodes proteins related to the magnetosome membrane ( mamY, X, Z , and ftsZ -like genes) and its deletion causes cells of Magnetospirillum to produce smaller magnetite particles with superparamagnetic characteristics [8] .

  • 3) mms6

    The mms6 operon contains five genes ( mms6, mmsF, mgr4070, mgr4071 , and mgr4074 ) [9] that also appear to be involved in magnetite crystal shape and size.

We need co-transfer the three vectors into E. coli , so the vector we chose be able to co-transformation with the vector pET-28a and pACYCDuet-1 is pCDFDuet-1. The final design of vector is shown in the following figure:

Figure 7. Schematic of piGEM-G6X construction.

We decided to get two gene fragments mamXY and mamGFDC + mms6 from Magnetospirillum gryphiswaldense MSR-1 genome. We respectively designed the method of gene obtain shown in the following figure:

Figure 8 . Schematic of the piGEM-G6X construction method.

3. Connection magnetosome with laccase

Meanwhile, in order to make laccase enriched, we designed a recombinant vector to fuse express mamW and RFP with the laccase. The protein MamW, a magnetosome transmembrane protein, can connect laccase and magnetosome. The RFP reporter can make the novel structure visible. So we designed the vector piGEM-WRL. As the vector will be co-transferred with another two vectors, we chose the pACYCDuet-1 as the backbone.

Figure 9. Schematic of piGEM-WRL construction. The protein MamW is a magnetosome transmembrane protein[10], mamW gene was amplified from the Magnetospirillum gryphiswaldense MSR-1

In a word, we wanted to fix laccase on magnetosome membrane, and utilize the magnetotaxis of magnetosome to enrich laccase on the cathode.

Reference

[1] Cosnier S, Holzinger M, Goff A L, et al. Recent advances in carbon nanotube-based enzymatic fuel cells.[J]. Frontiers in Bioengineering & Biotechnology, 2014, 2:45.

[2] Zhang P. Test method for the laccase activity with ABTS as the substrate[J]. Textile Auxiliaries, 2007.

[3] Lohsse A, Ullrich S, Katzmann E, et al. Functional Analysis of the Magnetosome Island in Magnetospirillum gryphiswaldense: The mamAB Operon Is Sufficient for Magnetite Biomineralization[J]. Plos One, 2011, 6(10):: e25561.

[4] Lohsse A, Ullrich S, Katzmann E, et al. Functional Analysis of the Magnetosome Island in Magnetospirillum gryphiswaldense: The mamAB Operon Is Sufficient for Magnetite Biomineralization[J]. Plos One, 2011, 6(10):: e25561.

[5] Lee H Y, Khosla C. Bioassay-Guided Evolution of Glycosylated Macrolide Antibiotics in Escherichia coli[J]. Plos Biology, 2007, 5(2):e45-e45.

[6] Araujo A C, Abreu F, Silva K T, et al. Magnetotactic Bacteria as Potential Sources of Bioproducts[J]. Marine Drugs, 2015, 13(1):389-430.

[7] Scheffel A, Gärdes A, Grünberg K, et al. The major magnetosome proteins MamGFDC are not essential for magnetite biomineralization in Magnetospirillum gryphiswaldense but regulate the size of magnetosome crystals[J]. Journal of bacteriology, 2008, 190(1): 377-386.

[8] Ding Y, Li J, Liu J, et al. Deletion of the ftsZ-like gene results in the production of superparamagnetic magnetite magnetosomes in Magnetospirillum gryphiswaldense.[J]. Journal of Bacteriology, 2010, 192(4):1097-1105.

[9] Dorothée M, Anna Q, Hojatollah V, et al. Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle[J]. Proceedings of the National Academy of Science, 2010, 107(12):5593-5598.

[10]Kolinko I, Lohße A, Borg S, et al. Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters[J]. Nature nanotechnology, 2014, 9(3): 193-197.