Difference between revisions of "Team:KU Leuven/Future/Economic potential analysis"

 
(116 intermediate revisions by 5 users not shown)
Line 25: Line 25:
 
             border-bottom: 0 solid transparent;
 
             border-bottom: 0 solid transparent;
 
         }
 
         }
         .main-navm:hover #outreach {
+
         .main-navm:hover #project {
 
             /* this is active when your mouse moves is over the item */
 
             /* this is active when your mouse moves is over the item */
 
             border: 0 solid transparent;
 
             border: 0 solid transparent;
 
             border-right: 0 solid transparent;
 
             border-right: 0 solid transparent;
 
         }
 
         }
         @media screen and (max-width: 1000px) {#outreach {
+
         @media screen and (max-width: 1000px) {#project {
 
                 border-bottom: 5px solid transparent;
 
                 border-bottom: 5px solid transparent;
 
                 border-right: 5px solid #8b7a57;
 
                 border-right: 5px solid #8b7a57;
Line 51: Line 51:
 
     <div class="summaryheader">
 
     <div class="summaryheader">
 
         <div class="summaryimg">
 
         <div class="summaryimg">
             <img src="https://static.igem.org/mediawiki/2015/b/b7/KU_Leuven_Researchbanner.jpg"
+
             <img src="https://static.igem.org/mediawiki/2015/5/59/KU_Leuven_Banner_Groen.jpg"
 
                 width="100%">
 
                 width="100%">
 
             <div class="head">
 
             <div class="head">
 
                 <h2>
 
                 <h2>
                     Economic potential analysis</h2>
+
                     Economic Potential Analysis</h2>
 
             </div>
 
             </div>
 
         </div>
 
         </div>
Line 64: Line 64:
 
         <div class="part">
 
         <div class="part">
 
             <h2>
 
             <h2>
                 An economic rationale analysis for investing in the use of micro-organisms for the production of artificial bone                                     implants.
+
                 An economic rationale analysis for investing in the use of micro-organisms for
 +
                the production of artificial bone implants
 
             </h2>
 
             </h2>
  
 
             <p>
 
             <p>
            Because our research contributes to the base of fundamental knowledge, it could be used as preliminary research for many applications. A brief look into the future potential, from an economic perspective, could possibly offer the rationale for a deeper research into the applications. As we will see, there are many opportunities and challenges that pop up and need to be addressed, even in this early stage. The main goal of this potential analysis is to construct a bridge between the pure scientific research and the commercial environment, resulting in a marketable product. In this analysis, we mainly focus on the use of Spot E.Shape principles for producing novel ways of producing artificial bone replacements. Although a similar analysis can be made for each of the other applications of the project. For more details on this, please go to the application section.  
+
                Because our research contributes to the base of fundamental knowledge, it could
 +
                be used as preliminary research for many applications. A brief look into the
 +
                future potential, from an economic perspective, could possibly offer the
 +
                rationale for a deeper research into the application. As we will see, there are
 +
                many opportunities and challenges that pop up and need to be addressed, even in
 +
                this early stage of the project. The main goal of this potential analysis is to construct a
 +
                bridge between the pure scientific research and the commercial environment,
 +
                resulting in a marketable product. In this analysis, we mainly focus on the use
 +
                of Spot E.Shape principles to discover novel ways of producing artificial bone
 +
                replacements . A similar analysis can be made for each of the other
 +
                applications of the project. For more details on the other applications, please go to the
 +
                <a href="https://2015.igem.org/Team:KU_Leuven/Future/More_applications">application page.</a>
 
             </p>
 
             </p>
           
 
            <br>
 
            </br>
 
    </div>
 
  
    <div class="part">
+
<div class="center">
 +
                <div id="image1"><br/>
 +
 
 +
                    <a class="example-image-link"
 +
                        data-lightbox="."
 +
                        data-title=""
 +
                        href="https://static.igem.org/mediawiki/2015/7/7e/KULeuven_hipprosthesis.png"><img alt="." class="example-image"
 +
                        height="60%"
 +
                        src="https://static.igem.org/mediawiki/2015/7/7e/KULeuven_hipprosthesis.png"
 +
                        width="60%"></a>
 +
                    <h4> <br/>
 +
                        <div id=figure1>Figure 1</div>
 +
                        A preview of how the artificial bone implant could look like.
 +
                    </h4>
 +
                </div>
 +
            </div>
 +
            <br/>
 +
 
 +
 
 +
 
 +
        </div>
 +
 
 +
        <div class="part">
 
             <h2>
 
             <h2>
              A deeper understanding of the market and industry dynamics in the bone-implant industry
+
                A deeper understanding of the market and industry dynamics in the bone-implant
 +
                industry
 
             </h2>
 
             </h2>
  
    <div class="center">
+
            <div class="center">
        <div class="quote">
+
                <div class="quote">
                <p>
+
                    <p>
            Nowadays, elderly people are more active than ever before. They cycle, play tennis, go swimming, travel, etc. Besides, they do not want to give up on those activities because of their age. However the chances for accidents possibly resulting broken limbs are quite high. Approximately 1% of all falls of elderly people result in a hip fracture with an acute mortality of 3%-5%. (23)  
+
                        Nowadays, elderly people are more active than ever before. They cycle, play
                 </p>
+
                        tennis, go swimming, travel, etc. Besides, they do not want to give up on those
 +
                        activities because of their age. Nevertheless, the risk of accidents with
 +
                        possibly serious health consequences and broken limbs grows with age.
 +
                        Approximately 1% of all falls of elderly people result in a hip fracture with an
 +
                        acute mortality of 3%-5%. <sup><a href="#Christmas2011">(2)</a></sup> 
 +
                    </p>
 +
                 </div>
 +
            </div>
 +
 
 +
            <br></br>
 +
            <p>
 +
                The ageing population and active life-style trends are two major driving forces
 +
                for the demand of orthopaedic devices. Apart from that, the medical world is
 +
                confronted with an increasing number of obesity and osteoporosis patients. These
 +
                factors result in an enhanced growth of the orthopaedic industry. Medical device
 +
                companies respond by continuously looking for new ways of treating fractured
 +
                bones in order to reduce the curing time and to obtain a more performant device.
 +
            </p>
 +
            <br></br>
 +
            <p>
 +
                A closer look into the industry dynamics reveals that the industry is highly
 +
                regulated and very dynamic where most of the industry players are
 +
                well-established small and medium-size enterprises (SME’s). A start-up company
 +
                often needs a significant better product to gain some market share in the
 +
                medical device industry. Many of them choose to first enter a niche market to
 +
                establish some early market share. Once they obtained a solid position in the
 +
                industry, they can broaden their horizon by reaching out to new, unexplored
 +
                markets.
 +
            </p>
 +
 
 
         </div>
 
         </div>
    </div>
+
 
              
+
        <div class="part">
 +
             <h2>
 +
                Relevance of using traditional materials for bone implants
 +
            </h2>
 +
 
 
             <p>
 
             <p>
The ageing population and rising living standards are two major driving forces for the demand of orthopaedic devices. Apart from that, the medical world is confronted with an increasing number of patient with obesity and osteoporosis. These factors result in an enhanced growth of the orthopaedic industry. Medical device companies respond by continuously looking for new ways of treating fractured bones in order to reduce the curing time and to obtain a more performant device.  
+
                Traditionally orthopaedic devices have titanium alloys as the dominant material
 +
                used in most artificial bone implants. However alternatives with new and better
 +
                functions, lower failure rates and less resource demanding are finding their way to the industry. One
 +
                of the most promising examples is tissue engineering where the cells from a
 +
                patient or a donor are isolated. Thereafter, they are combined with
 +
                biomaterials, grown in laboratories and then implanted into the patient. This approach is becoming more and more              a reality due to technological advancements. However there are some major concerns and drawbacks that prevent this technology to  really break through in the market for medical devices. The limited viable window from the point of extraction
 +
                of cells to the reintroduction makes this technology less flexible.<sup><a href="#Phillips2011">(9)</a></sup>
 +
                The transportation of these cells to and from the laboratory is also a huge
 +
                challenge. Besides, the storage of tissue engineered products (TEP) at a
 +
                constant temperature of -32°C puts pressure on the cost-efficiency.<sup><a href="#Phillips2011">(9)</a></sup>
 +
                On top of that, TEP's in Europe suffered a lot under the
 +
                the lack of regulation. They are beyond the medical device regulation and the
 +
                pharmaceutical regulation.<sup><a href="#Phillips2011">(9)</a></sup> This ambiguity concerning the regulation              in Europe leads to a strong delay in market introduction. At the moment there is no
 +
                dominant supply model based on mass production due to capacity limitations. This
 +
                prevents TEP’s from really breaking through and becoming the industrially
 +
                standard technology.<sup><a href="#Phillips2011">(9)</a></sup>
 +
 
 
             </p>
 
             </p>
       
+
            <br></br>
 +
 
 
             <p>
 
             <p>
A closer look into the industry dynamics reveals that the industry is highly regulated and very dynamic where most of the industry players are well-established small and medium-size enterprises (SME’s). A start-up company often needs a significant better product to gain some market share in the medical device industry.
+
                In the last decade, composite materials, polymers and ceramics steadily found
 +
                their way to the medical device industry. This is mainly due to the lower
 +
                failures rates, recalls and weight. Most materials also suffer from substantial wear effects.The particles that come loose during the process could possibly have a negative effect on the human health. 
 +
The trend to use more eco-friendly and less scarce materials which are produced in a sustainable way is pushing the need for new materials. With our Spot E.Shape project,
 +
                we would like to take this to the next level by imitating the natural bone
 +
                structure as much as possible through the use of micro-organisms.  
 
             </p>
 
             </p>
 +
        </div>
  
    </div>  
+
        <div class="part">
 +
            <h2>
 +
                The positive consequences of using micro-organisms for bone engineering
 +
            </h2>
  
 
+
            <p>
 +
                Spot E.Shape can be used for the construction of a wide range of bone prosthesis. Here we focus on
 +
                hip prosthesis. These are of particular interest because they still result in a high acute mortality rate and the risk of complications serious shortens the life expectancy of the patient. Thus it is useful to look for new ways to produce hip implants.
 +
            </p>
 +
            <br></br>
  
 +
            <p>
 +
                Recently, surgeons are using a 3D printed implants made of titanium, polymers or
 +
                ceramics for hip transplantations. Here the patient’s CT scan is used to design
 +
                an exact replica of the femoral head. Our project could optimize this design by
 +
                using bacteria that form and precipitate calcium phosphate in a controlled way.
 +
                From there a porous, spongy structure similar to the bone can be formed. It's possible that these bacteria have to be supported by some structure (e.g. titanium frame) to receive the necessary characteristics for the hip implant.
 +
                Thereafter, this technique can also be used as a surface coating for the titanium alloy, so that the wear effects will be far less.
 +
            </p>
 +
            <br></br>
 +
            <p>
 +
                In order to identify and deal with the competitive implications of the so called
 +
                salient attributes, we used the ACE Matrix (Attribute Categorization and
 +
                Evaluation) by Ian C. MacMillan and Rita Gunther McGrath <sup><a href="#MacMillan1996">(7)</a></sup> applied to our
 +
                orthopaedic device. The columns refer to the level of energy the attribute
 +
                generate for the customer while the rows refer to the sentiment it provokes.
 +
                <sup><a href="#MacMillan1996">(7)</a></sup>  This analytic tool serves to identify the right mix and dynamic fit between
 +
                the customer needs and the attributes of the product.<sup><a href="#MacMillan1996">(7)</a></sup>  Particularly
 +
                interesting are the powerful energizers that often become the determining factor
 +
                for the purchase decision. The layer of calcium deposited by the bacteria can be
 +
                seen as a coating for the titanium structure which reduces substantially the
 +
                amount of constraint and wear of the prosthesis (Energizer). Wear is something that more
 +
                traditional metallic and polyethylene prosthesis have to deal with. Other reasons why customers would be willing to buy our product (compared to the competitor's one), are its eco-friendliness and low material cost (possibly lower price).
 +
            </p>
 +
            <br></br>
  
</div>
+
<div class="center">
 +
                <div id="image1">
 +
                    <a class="example-image-link"
 +
                        data-lightbox="Words participants associated with synthetic biology."
 +
                        data-title=""
 +
                        href="https://static.igem.org/mediawiki/2015/8/84/Matrix.png"><img alt="Do you approve synthetic biology in general" class="example-image"
 +
                        height="85%"
 +
                        src="https://static.igem.org/mediawiki/2015/8/84/Matrix.png"
 +
                        width="85%"></a>
 +
                    <h4> <br/>
 +
                        <div id=figure1>Figure 2</div>
 +
                        The ACE-matrix by MacMillan and McGrath<sup><a href="#MacMillan1996">(7)</a></sup> applied to our orthopaedic device based on micro-organisms. Click to enlarge
 +
                    </h4>
 +
                </div>
 +
            </div>
 +
            <br/>
  
  
<div class="summaryheader">
+
          <p>
<div class="summaryimg">
+
                An important issue is that dissatisfiers can encourage the customers (mostly
<img src="https://static.igem.org/mediawiki/2015/b/b7/KU_Leuven_Researchbanner.jpg"
+
                surgeons) to opt for a competitor which reduces customer loyalty.<sup><a href="#MacMillan1996">(7)</a></sup>  In the
width="100%">
+
                case of our medical device, it is crucial to conduct long-term experiments to
<div class="head">
+
                test possible health effects. The process of bacteria removal could also evoke serious customer concerns which could lead customers to choose for a competitor. An effective method in combination with lots of customer information campaigns are two ways to deal with this dissatisfier. Additionally already in the prototyping phase, we
<h2>
+
                need to start thinking about possible ways to automate and fasten the production
References</h2>
+
                process. This could reduce the price of the product and at the same time the wait-to-delivery time.
 +
                On the other hand, a competitor’s action can turn a
 +
                tolerable into a dissatisfier, e.g. the competitor eliminates a negative
 +
                characteristic. To be one step ahead of competition, we need to monitor continuously our product quality.
 +
            </p>
 +
            <br></br>
 +
 
 +
            <p>
 +
                We have to remark that the validation phase concerning the customer perceptions
 +
                of attributes still needs to be performed. Keep also in mind that this analysis
 +
                is a foresight for a medical device application, which implies that at this
 +
                stage, not every attribute can be proved scientifically.
 +
            </p>
 +
        </div>
 +
 
 +
        <div class="part">
 +
            <h2>
 +
                Barriers for the market introduction of orthopaedic materials based on
 +
                micro-organisms
 +
            </h2>
 +
 
 +
            <p>
 +
                Introducing a brand new technology often comes with some major challenges to
 +
                overcome. In this section, we are focusing on the different potential issues
 +
                that need to be addressed in further stages of the project. We identify three of
 +
                them, namely the financial gap, regulation gap and human capital gap.
 +
            </p>
 +
            <br></br>
 +
 
 +
              <p>
 +
            <b>
 +
                Financial gap
 +
            </b><br/>
 +
                Orthopaedic research is often time-consuming and requires a substantial
 +
                investment during the development, production and distribution phase before it
 +
                can be translated into a final product for patient care.<sup><a href="#Buckwalter2008At">(1)</a></sup> During the current
 +
                proof-of-concept phase of the project, we already experienced a clear need for
 +
                financials. Radical innovations typically need large investments in further
 +
                technological development before a first working prototype can be constructed
 +
                and tested. <sup><a href="#Jensen2001">(4)</a></sup> From the perspective of potential investors, there is a lot of
 +
                uncertainty about the outcome which will probably lead to a long payback time
 +
                and thus few economic incentives to invest in this early stage of the project.
 +
                <sup><a href="#Shane2004">(12)</a></sup> The phenomenon of investor reluctance is often described as ‘the financial
 +
                barrier’ which plays a role on the level of private financiers, such as banks
 +
                and venture capital firms.<sup><a href="#Lockett2002">(6)</a></sup> The need for government stimulants through
 +
                specialised funding programs is clearly present.<sup><a href="#Rasmussen2011">(10)</a></sup> This is underlined by the
 +
                fact that publicly funded venture capital firms are more willing to consider
 +
                investing in early-stage university spin-outs than private ones.<sup><a href="#Knockaert2010">(5)</a></sup>
 +
            </p>
 +
            <br></br>
 +
 
 +
            <p>
 +
                Next is the pre-seed funding phase that further explores
 +
                managerial and organisational aspects of the project in order to make it more
 +
                attractive for potential investors.<sup><a href="#Rasmussen2011">(10)</a></sup> In the proof-of-concept phase,
 +
                government funding mainly serves the role of reducing the technological
 +
                uncertainty while the reduction of the organisational uncertainty is mainly the
 +
                purpose of pre-seed funding. For this phase we are currently fully relying on
 +
                sponsorship from the industry and university organisations. The option of applying for a governmental grant remains possible for further stages.
 +
            </p>
 +
            <br></br>
 +
 
 +
            <p>
 +
                The third major phase or seed phase takes place when the company is established,
 +
                but basically it does not generate enough cash flow to survive on its own. For
 +
                their early investments, investors are often given an equity stake in return.
 +
                Attracting venture capital investors remains difficult because they prefer to
 +
                invest in university spin-outs after the seed phase, when the research and
 +
                following application proved to be robust.<sup><a href="#Wright2006">(14)</a></sup> Possible investors should be
 +
                found in the industry, angel investors, crowd funding, government, etc.
 +
            </p>
 +
            <br></br>
 +
 
 +
            <p>
 +
                When a company grows, at some point in time there will be an immediate financial
 +
                need that is too high to bear for traditional investors. Often regional and
 +
                national venture capital firms are then the only option to turn at. However
 +
                involving venture capital firms should be a well-considered decision. They bring along a
 +
                new working culture, make demands (e.g. hiring professional managers and
 +
                administrators) and put pressure on the firm to get the necessary in-house
 +
                competences. All of this is done with respect to the return-on-investment they
 +
                need so desperately regarding their 10-year horizon.<sup><a href="#Styhre2014">(13)</a></sup>
 +
                This could lead to tremendous progress for the company or they can break up with the
 +
                company in the long term if they don't receive a high enough return-on-investment.<sup><a href="#Styhre2014">(13)</a></sup>
 +
            </p>
 +
            <br></br>
 +
 
 +
            <p>
 +
            <b>
 +
                Regulation gap
 +
            </b><br/>
 +
 
 +
                A lack of regulation can be considered as double-edged, where it shortens the
 +
                product innovation cycle but at the same time makes marketing your product more
 +
                complicated. Orthopaedic devices are normally classified as a medical device
 +
                and fall within the European medical device regulation. To be issued with a CE
 +
                mark, medical devices must achieve high quality, safety and performance
 +
                standards.<sup><a href="#Phillips2011">(9)</a></sup> However the specificity of our device, which is based on the
 +
                precipitation by bacteria, could possibly be subject to the regulation of
 +
                genetically modified organisms. The narrow legal framework concerning GMO's in
 +
                Europe could affect and delay the innovation process of our orthopaedic device.
 +
                The ambiguity and lack of clarity to which regulation our application can be
 +
                applied, shows the need for the realignment of regulation with practice and
 +
                current state-of-technology.<sup><a href="#Freeman1988">(3)</a></sup>
 +
            </p>
 +
            <br></br>
 +
 
 +
            <p>
 +
            <b>
 +
                Human capital gap
 +
            </b><br/>
 +
 
 +
                Knockaert et al. suggested that “One of the principal challenges facing
 +
                university spin-outs is academic entrepreneurs tending to possess little
 +
                commercial human capital.”<sup><a href="#Knockaert2010">(5)</a></sup> The fact that they are experts in their domain
 +
                does not make them the perfect marketers for their product. As showed above, the
 +
                orthopaedic industry is characterised by a certain set of aspects. Appropriate
 +
                managers will more likely find more adapted ways of dealing with these
 +
                differences. Besides there are possible conflicts of interest with the
 +
                traditional roles of research and teaching that might pop up when academic
 +
                entrepreneurs need to run a business.<sup><a href="#Rasmussen2011">(10)</a></sup> Raising venture capital should also
 +
                be done by an entrepreneur who possesses lots of commercial human capital. This
 +
                shows clearly that the different challenges are interrelated.<sup><a href="#Knockaert2010">(5)</a></sup>
 +
            </p>
 +
 
 +
        </div>
 +
 
 +
        <div class="part">
 +
            <h2>
 +
                Desired approach for the market introduction
 +
            </h2>
 +
 
 +
            <p>
 +
                The orthopaedic device industry is currently confronted with a rising demand for
 +
                new orthopaedic hip prosthesis. To deal with this, we came up with a brand
 +
                new device based on the use of bacteria. However we described three major
 +
                barriers that can potentially disturb the realization of its economic potential.
 +
                The purpose of this section is not to provide an exhaustive description of a
 +
                go-to-market-strategy or business plan, but rather briefly offering some
 +
                guidelines that need to be kept in mind to secure a bright future perspective.
 +
            </p>
 +
            <br></br>
 +
 
 +
            <p>
 +
                Parallel to tissue engineered products, where they also work with cells<sup><a href="#Phillips2011">(10)</a></sup>, the
 +
                end product is highly customized and falls under the ‘Make to Order’ approach.
 +
                In view of the high demand of orthopaedic products, this will not be sufficient
 +
                to establish a competitive supply model that is capable of gathering a
 +
                significant part of the market. The way to deal with this obstacle should be to
 +
                identify all the parts that can be automated and scaled-up already in an early
 +
                stage of the development process in order to satisfy a mass market.<sup><a href="#Phillips2011">(10)</a></sup>
 +
                In order to commercialize the device, there should also be thought off patenting
 +
                the invention. The Bayh–Dole-inspired legislation made this possible for
 +
                universities and was adopted by many countries in their national regulation.
 +
                <sup><a href="#Phillips2011">(9)</a></sup>
 +
            </p>
 +
            <br></br>
 +
 
 +
            <p>
 +
                There comes a time when you can not do everything on your own anymore,
 +
                especially in an industry where multiple disciplines overlap and different
 +
                competences are needed. The interdisciplinary aspect is one way
 +
                to explain the search for the right strategic partner to forge an alliance with.
 +
                The reduction of technological uncertainty in the early phases of a project
 +
                could be a second reason for collaboration with a partner from industry. <sup><a href="#Pangarkar2003">(10)</a></sup>
 +
                This will make the search for potential investors a lot easier and reduce the
 +
                time-to-market for the application. This is also often the phase where a
 +
                university spin-off is created, which acts like an independent business.
 +
            </p>
 +
 
 +
            <br></br>
 +
<div class="center">
 +
                <div id="image1">
 +
                    <a class="example-image-link"
 +
                        data-lightbox="."
 +
                        data-title=""
 +
                        href=""><img alt="." class="example-image"
 +
                        src="https://static.igem.org/mediawiki/2015/0/02/KU_Leuven_interdiscipline.png"
 +
                        width="55%"></a>
 +
                    <h4> <br/>
 +
                        <div id=figure3>Figure 3</div>
 +
                        Illustration of the multidisciplinarity of the hip bone implant industry. Click to enlarge
 +
                    </h4>
 +
                </div>
 +
            </div>
 +
            <br/>
 +
 
 +
 
 +
            <p>
 +
                Anecdotal evidence states that it is very hard to become profitable as a company
 +
                from the start. However the goal of taking market share by aiming at a niche market is
 +
                a much more realistic objective than reaching a positive cash flow. Once this is
 +
                obtained, the company will be considered as an interesting investment for the
 +
                big medical device companies which will be eager to take over the company.
 +
                However if the ultimate goal of market share is not reached, the company will
 +
                not generate a breakthrough and succumb rapidly.<sup><a href="#Styhre2014">(13)</a></sup>
 +
 
 +
            </p>
 +
            <br></br>
 +
 
 +
       
 
</div>
 
</div>
 
</div>
 
</div>
 
+
<!--References-->
 +
<div class="summaryheader">
 +
    <div class="summaryimg">
 +
  <img src="https://static.igem.org/mediawiki/2015/5/59/KU_Leuven_Banner_Groen.jpg" width="100%">
 +
  <div class="head">
 +
      <h2> References </h2>
 +
    </div>
 +
  </div>
 +
  </div>
 
<div class="reference">
 
<div class="reference">
 
<div class="part">
 
<div class="part">
<!--                      References                            -->
+
 
<!-- This document was automatically generated with bibtex2html 1.97
+
           
    (see http://www.lri.fr/~filliatr/bibtex2html/),
+
    with the following command:
+
    /usr/bin/bibtex2html --no-abstract -nokeywords survey.bib  -->
+
 
<table>
 
<table>
  
 
<tr valign="top">
 
<tr valign="top">
 
<td align="right" class="bibtexnumber">
 
<td align="right" class="bibtexnumber">
[<a name="Felt2007">1</a>]
+
[<a name="Buckwalter2008">1</a>]
 
</td>
 
</td>
 
<td class="bibtexitem">
 
<td class="bibtexitem">
Ulrike Felt, Brian Wynne, Maria&nbsp;Eduarda Gon&ccedil;alves, Sheila Jasanoff,
+
Joseph&nbsp;A. Buckwalter and Timothy&nbsp;M. Wright.
Michel Callon, Maria Jepsen, Pierre-Benoit Joly, Zdenek Konopasek, Stefan May,
+
Orthopaedic surgeons, scientists, and industry.
Claudia Neubauer, Arie Rip, Karen Siune, Andy Stirling, and Mariachiara
+
<em>Journal of Orthopaedic Research</em>, 26(3):279-280, March 2008.
Tallacchini.
+
[&nbsp;<a href="http://onlinelibrary.wiley.com/doi/10.1002/jor.20613/abstract http://onlinelibrary.wiley.com/store/10.1002/jor.20613/asset/20613\_ftp.pdf?v=1\&t=iemwl0ul\&s=954d68bb30c00634d30dff9db18abf40be7eafcd">http</a>&nbsp;]
<em>Taking European knowledge society seriously</em>. 2007. [&nbsp;
+
 
<a href="http://www.bmbf.de/pub/EuropeanKnowledge%286%29.pdf">.pdf</a>&nbsp;]
+
 
</td>
 
</td>
 
</tr>
 
</tr>
 +
  
 
<tr valign="top">
 
<tr valign="top">
 
<td align="right" class="bibtexnumber">
 
<td align="right" class="bibtexnumber">
[<a name="Hill1998">2</a>]
+
[<a name="Christmas2011">2</a>]
 
</td>
 
</td>
 
<td class="bibtexitem">
 
<td class="bibtexitem">
Alison Hill, Mike Michael, Peter Wheale, Rene&nbsp;Von Schomberg, and Peter
+
Colleen Christmas.
Glasner. Engineering Acceptance: Representations of 'The Public' in Debates on
+
Hip Fracture.
Biotechnology.
+
<em>Annals of Internal Medicine</em>, 155(11):ITC6-1, December 2011.
<em>The social management of genetic Engineering</em>, pages 201-217, 1998. [&nbsp;
+
[&nbsp;<a href="http://dx.doi.org/10.7326/0003-4819-155-11-201112060-01006">DOI</a>&nbsp;]
<a
+
 
    href="http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2621.2002.tb09566.x/epdf">.pdf</a>&nbsp;]
+
 
</td>
 
</td>
 
</tr>
 
</tr>
 +
  
 
<tr valign="top">
 
<tr valign="top">
 
<td align="right" class="bibtexnumber">
 
<td align="right" class="bibtexnumber">
[<a name="McHughen2007">3</a>]
+
[<a name="Freeman1988">3</a>]
 
</td>
 
</td>
 
<td class="bibtexitem">
 
<td class="bibtexitem">
Alan McHughen. Public perceptions of biotechnology, 2007. [&nbsp;
+
C.&nbsp;Freeman and C.&nbsp;Perez.
<a href="http://dx.doi.org/10.1002/biot.200700071">DOI</a>&nbsp;]
+
<em>Structural crises of adjustment, business cycles and investment
 +
  behaviour</em>.
 +
Pinter, London, 1988.
  
 
</td>
 
</td>
 
</tr>
 
</tr>
 +
  
 
<tr valign="top">
 
<tr valign="top">
 
<td align="right" class="bibtexnumber">
 
<td align="right" class="bibtexnumber">
[<a name="Pauwels2013">4</a>]
+
[<a name="Jensen2001">4</a>]
 
</td>
 
</td>
 
<td class="bibtexitem">
 
<td class="bibtexitem">
Eleonore Pauwels. Public Understanding of Synthetic Biology.
+
Richard Jensen and Marie Thursby.
<em>BioScience</em>, 63(2):79-89, 2013. [&nbsp;
+
Proofs and prototypes for sale: The licensing of university
<a href="http://dx.doi.org/10.1525/bio.2013.63.2.4">DOI</a>&nbsp;|
+
  inventions.
<a href="http://bioscience.oxfordjournals.org/cgi/doi/10.1525/bio.2013.63.2.4">http</a>&nbsp;]
+
<em>The American Economic Review</em>, 91(1):240-259, March 2001.
 +
</td>
 +
</tr>
 +
 
 +
 
 +
<tr valign="top">
 +
<td align="right" class="bibtexnumber">
 +
[<a name="Knockaert2010">5</a>]
 +
</td>
 +
<td class="bibtexitem">
 +
Mirjam Knockaert, Mike Wright, Bart Clarysse, and Andy Lockett.
 +
Agency and similarity effects and the VC's attitude towards academic
 +
  spin-out investing.
 +
<em>Journal of Technology Transfer</em>, 35(6):567-584, December 2010.
 +
[&nbsp;<a href="http://dx.doi.org/10.1007/s10961-009-9138-y">DOI</a>&nbsp;]
  
 
</td>
 
</td>
 
</tr>
 
</tr>
 +
  
 
<tr valign="top">
 
<tr valign="top">
 
<td align="right" class="bibtexnumber">
 
<td align="right" class="bibtexnumber">
[<a name="Raeymaekers">5</a>]
+
[<a name="Lockett2002">6</a>]
 
</td>
 
</td>
 
<td class="bibtexitem">
 
<td class="bibtexitem">
Peter Raeymaekers. Design ontmoet biologie: synthetische biologie in Vlaanderen.
+
Andy Lockett, Gordon Murray, and Mike Wright.
<em>Brussel IST</em>. [&nbsp;
+
Do UK venture capitalists still have a bias against investment in
<a href="http://homes.esat.kuleuven.be/~bdmdotbe/newer/documents/dossier_27_synthetische_biologie.pdf">.pdf</a>&nbsp;]
+
  new technology firms.
 +
<em>Research Policy</em>, 31(6):1009-1030, August 2002.
 +
[&nbsp;<a href="http://dx.doi.org/10.1016/S0048-7333(01)00174-3">DOI</a>&nbsp;|
 +
<a href="http://www.sciencedirect.com/science/article/pii/S0048733301001743 http://www.sciencedirect.com/science/article/pii/S0048733301001743/pdfft?md5=8ab429d738b6dbef88f8613a75eca69b\&pid=1-s2.0-S0048733301001743-main.pdf">.pdf</a>&nbsp;]
 +
 
 +
</td>
 +
</tr>
 +
 
 +
 
 +
<tr valign="top">
 +
<td align="right" class="bibtexnumber">
 +
[<a name="MacMillan1996">7</a>]
 +
</td>
 +
<td class="bibtexitem">
 +
Ian&nbsp;C. MacMillan and Rita&nbsp;Gunther McGrath.
 +
Discover your products hidden potential.
 +
<em>Harvard Business Review</em>, 74(3):58, 1996.
 +
 
 +
</td>
 +
</tr>
 +
 
 +
 
 +
<tr valign="top">
 +
<td align="right" class="bibtexnumber">
 +
[<a name="Pangarkar2003">8</a>]
 +
</td>
 +
<td class="bibtexitem">
 +
Nitin Pangarkar and Dietmar&nbsp;W Hutmacher.
 +
Invention and business performance in the tissue-engineering
 +
  industry.
 +
Technical Report&nbsp;6, 2003.
 +
[&nbsp;<a href="http://dx.doi.org/10.1089/10763270360728224">DOI</a>&nbsp;]
 +
 
 +
</td>
 +
</tr>
 +
 
 +
 
 +
<tr valign="top">
 +
<td align="right" class="bibtexnumber">
 +
[<a name="Phillips2011">9</a>]
 +
</td>
 +
<td class="bibtexitem">
 +
Wendy Phillips, Thomas Johnsen, Nigel Caldwell, and Julian&nbsp;B. Chaudhuri.
 +
The difficulties of supplying new technologies into highly regulated
 +
  markets: the case of tissue engineering.
 +
<em>Technology Analysis &amp; Strategic Management</em>, 23(3):213-226,
 +
  March 2011.
 +
[&nbsp;<a href="http://dx.doi.org/10.1080/09537325.2011.550391 http://www.tandfonline.com/doi/abs/10.1080/09537325.2011.550391 http://www.tandfonline.com/doi/pdf/10.1080/09537325.2011.550391">http</a>&nbsp;]
 +
 
 +
</td>
 +
</tr>
 +
 
 +
 
 +
<tr valign="top">
 +
<td align="right" class="bibtexnumber">
 +
[<a name="Rasmussen2011">10</a>]
 +
</td>
 +
<td class="bibtexitem">
 +
Einar Rasmussen, Simon Mosey, and Mike Wright.
 +
The Evolution of Entrepreneurial Competencies: A Longitudinal Study
 +
  of University Spin-Off Venture Emergence.
 +
<em>Journal of Management Studies</em>, 48(6):1314-1345, September
 +
  2011.
 +
[&nbsp;<a href="http://dx.doi.org/10.1111/j.1467-6486.2010.00995.x">DOI</a>&nbsp;|
 +
<a href="http://onlinelibrary.wiley.com/doi/10.1111/j.1467-6486.2010.00995.x/abstract">http</a>&nbsp;]
 +
 
 +
</td>
 +
</tr>
 +
 
 +
 
 +
<tr valign="top">
 +
<td align="right" class="bibtexnumber">
 +
[<a name="Rasmussen2012">11</a>]
 +
</td>
 +
<td class="bibtexitem">
 +
Einar Rasmussen and Roger S&oslash;&nbsp;rheim.
 +
How governments seek to bridge the financing gap for university
 +
  spin-offs: proof-of-concept, pre-seed, and seed funding.
 +
<em>Technology Analysis &amp; Strategic Management</em>, 24(7):663-678,
 +
  August 2012.
 +
[&nbsp;<a href="http://dx.doi.org/10.1080/09537325.2012.705119">DOI</a>&nbsp;|
 +
<a href="http://dx.doi.org/10.1080/09537325.2012.705119 http://www.tandfonline.com/doi/abs/10.1080/09537325.2012.705119 http://www.tandfonline.com/doi/pdf/10.1080/09537325.2012.705119">http</a>&nbsp;]
 +
 
 +
</td>
 +
</tr>
 +
 
 +
 
 +
<tr valign="top">
 +
<td align="right" class="bibtexnumber">
 +
[<a name="Shane2004">12</a>]
 +
</td>
 +
<td class="bibtexitem">
 +
Scott Shane.
 +
<em>Academic entrepreneurship: University spinoffs and wealth
 +
  creation</em>, volume&nbsp;30.
 +
2004.
 +
[&nbsp;<a href="http://dx.doi.org/10.4337/9781843769828.00001">DOI</a>&nbsp;|
 +
<a href="http://www.amazon.com/dp/1843764547">http</a>&nbsp;]
 +
 
 +
</td>
 +
</tr>
 +
 
 +
 
 +
<tr valign="top">
 +
<td align="right" class="bibtexnumber">
 +
[<a name="Styhre2014">13</a>]
 +
</td>
 +
<td class="bibtexitem">
 +
Alexander Styhre.
 +
Coping with the financiers: attracting venture capital investors and
 +
  end-users in the biomaterials industry.
 +
<em>Technology Analysis &amp; Strategic Management</em>, 00(0):1-13, 2014.
 +
[&nbsp;<a href="http://www.tandfonline.com/doi/abs/10.1080/09537325.2014.900170">http</a>&nbsp;]
 +
 
 +
</td>
 +
</tr>
 +
 
 +
 
 +
<tr valign="top">
 +
<td align="right" class="bibtexnumber">
 +
[<a name="Wright2006">14</a>]
 +
</td>
 +
<td class="bibtexitem">
 +
Mike Wright, Andy Lockett, Bart Clarysse, and Martin Binks.
 +
University spin-out companies and venture capital.
 +
<em>Research Policy</em>, 35(4):481-501, May 2006.
 +
[&nbsp;<a href="http://dx.doi.org/10.1016/j.respol.2006.01.005">DOI</a>&nbsp;|
 +
<a href="http://www.sciencedirect.com/science/article/pii/S0048733306000369 http://www.sciencedirect.com/science/article/pii/S0048733306000369/pdfft?md5=c653ac4c9573b939a052d6e27c029527\&pid=1-s2.0-S0048733306000369-main.pdf">.pdf</a>&nbsp;]
 +
 
 
</td>
 
</td>
 
</tr>
 
</tr>
 
</table>
 
</table>
</div>
+
 
</div>
+
            <br/>
<br/>
+
 
<br/>
+
        </div>
<br/>
+
    </div>
<!--------------------------------------------------Foot don't touch!------------------------------------------------------>
+
 
div class="subsections">
+
    <!--------------------------------------------------Foot don't touch!------------------------------------------------------>
 +
<div class="subsections">
 
<div class="subsectionwrapper">
 
<div class="subsectionwrapper">
 
<div class="subimgrow">
 
<div class="subimgrow">
 +
<div class="whitespace1"></div>
 
<div class="subimg">
 
<div class="subimg">
<a href="https://2015.igem.org/Team:KU_Leuven/Future/Economic potential analysis">
+
<a href="https://2015.igem.org/Team:KU_Leuven/Future/More applications">
  <img src="https://static.igem.org/mediawiki/2015/e/e6/KU_Leuven_Wiki_Button_-_Parts2.png" width="100%">
+
  <img src="https://static.igem.org/mediawiki/2015/e/e9/KU_Leuven_Wiki_Button_-_Other_applications2.png" width="100%">
 
</a>
 
</a>
 
</div>
 
</div>
Line 206: Line 692:
 
<div class="subimg">
 
<div class="subimg">
 
<a href="https://2015.igem.org/Team:KU_Leuven/Future/Future collaboration">
 
<a href="https://2015.igem.org/Team:KU_Leuven/Future/Future collaboration">
  <img src="https://static.igem.org/mediawiki/2015/e/e0/KU_Leuven_Wiki_Button_-_Results2.png" width="100%">
+
  <img src="https://static.igem.org/mediawiki/2015/e/e0/KU_Leuven_Wiki_Button_-_Collaboration2.png" width="100%">
 
</a>
 
</a>
 
</div>
 
</div>
Line 218: Line 704:
 
</a>
 
</a>
 
</div>
 
</div>
 +
 +
<div class="whitespace1"></div>
 
</div>
 
</div>
  
 
<div class="subtextrow">
 
<div class="subtextrow">
 +
<div class="whitespace1"></div>
 
<div class="subtext">
 
<div class="subtext">
<a href="https://2015.igem.org/Team:KU_Leuven/Future/Economic potential analysis">
+
<a href="https://2015.igem.org/Team:KU_Leuven/Future/More applications">
  <h2>Economic potential analysis</h2>
+
  <h2>More Applications</h2>
<p>An evaluation of the future potential of Spot E.Shape for the artificial bone implant industry.
+
<p>Click here to discover our other applications.</p>
<br/>
+
</p>
+
 
</a>
 
</a>
 
</div>
 
</div>
Line 235: Line 722:
 
<div class="subtext">
 
<div class="subtext">
 
<a href="https://2015.igem.org/Team:KU_Leuven/Future/Future collaboration">
 
<a href="https://2015.igem.org/Team:KU_Leuven/Future/Future collaboration">
  <h2>Future collaboration</h2>
+
  <h2>Future Collaboration</h2>
  <p> A brief description of how a collaboration between the KU Leuven and TU Delft.
+
  <p>A brief description how a future collaboration with the TU Delft iGEM team could be formed.</p>
<br/>
+
</p>
+
 
</a>
 
</a>
 
</div>
 
</div>
Line 248: Line 733:
 
<a href="https://2015.igem.org/Team:KU_Leuven/Future">
 
<a href="https://2015.igem.org/Team:KU_Leuven/Future">
 
  <h2>Back</h2>
 
  <h2>Back</h2>
<p>Go back to the Future page.
+
<p>Go back to the Future page.</p>
<br/>
+
</p>
+
 
</a>
 
</a>
 
</div>
 
</div>
 +
<div class="whitespace1"></div>
 
</div>
 
</div>
  
 
<div class="subimgreadmore">
 
<div class="subimgreadmore">
 +
<div class="whitespace1"></div>
 
<div class="subimgrm">
 
<div class="subimgrm">
<a href="https://2015.igem.org/Team:KU_Leuven/Future/Economic potential analysis">
+
<a href="https://2015.igem.org/Team:KU_Leuven/Future/More applications">
 
<div id="more">
 
<div id="more">
 
<img src="https://static.igem.org/mediawiki/2015/7/73/KUL_Wiki_Button_-_Read_more.png" height="40%" width="85%" alt="Read more">
 
<img src="https://static.igem.org/mediawiki/2015/7/73/KUL_Wiki_Button_-_Read_more.png" height="40%" width="85%" alt="Read more">
Line 265: Line 750:
  
 
<div class="whitespace">
 
<div class="whitespace">
</div>
+
</div>  
  
 
<div class="subimgrm">
 
<div class="subimgrm">
Line 279: Line 764:
  
 
<div class="subimgrm">
 
<div class="subimgrm">
<a href=" https://2015.igem.org/Team:KU_Leuven/Future">
+
<a href="https://2015.igem.org/Team:KU_Leuven/Future">
 
<div id="back">
 
<div id="back">
 
<img src="https://static.igem.org/mediawiki/2015/7/73/KUL_Wiki_Button_-_Read_more.png" height="40%" width="85%" alt="Read more">
 
<img src="https://static.igem.org/mediawiki/2015/7/73/KUL_Wiki_Button_-_Read_more.png" height="40%" width="85%" alt="Read more">
Line 285: Line 770:
 
</a>
 
</a>
 
</div>
 
</div>
 +
<div class="whitespace1"></div>
 
</div>
 
</div>
 
  
 
<div class="subimgrowm">
 
<div class="subimgrowm">
 
<div class="subimgm">
 
<div class="subimgm">
  <a href="https://2015.igem.org/Team:KU_Leuven/Research/Parts" >
+
  <a href="https://2015.igem.org/Team:KU_Leuven/Future/More applications" >
     <b>Parts</b>
+
     <b>More Applications</b>
  <img src="https://static.igem.org/mediawiki/2015/e/e6/KU_Leuven_Wiki_Button_-_Parts2.png" width="100%" ></a>
+
  <img src="https://static.igem.org/mediawiki/2015/e/e9/KU_Leuven_Wiki_Button_-_Other_applications2.png" width="100%" ></a>
 
</div>
 
</div>
  
Line 299: Line 784:
  
 
   <div class="subtextm">
 
   <div class="subtextm">
       <a href="https://2015.igem.org/Team:KU_Leuven/Research/Parts" >
+
       <a href="https://2015.igem.org/Team:KU_Leuven/Future/More applications" >
 
         <p>
 
         <p>
           A detailed description about the interaction between our two cells and the genetic circuit can be found here.
+
           Click here to discover our other applications.
 
         </p>
 
         </p>
 
     </a>  
 
     </a>  
Line 307: Line 792:
 
</div>
 
</div>
  
 +
<div class="subimgrowm">
 +
<div class="whiterow">
 +
</div>
 +
</div>
  
 +
<div class="subimgrowm">
 +
<div class="subimgm">
 +
<a href="https://2015.igem.org/Team:KU_Leuven/Future/Future collaboration" >
 +
    <b>Future Collaboration</b>
 +
<img src="https://static.igem.org/mediawiki/2015/e/e0/KU_Leuven_Wiki_Button_-_Collaboration2.png" width="100%" ></a>
 
</div>
 
</div>
 +
 +
<div class="whitespace">
 
</div>
 
</div>
 +
 +
  <div class="subtextm">
 +
      <a href="https://2015.igem.org/Team:KU_Leuven/Future/Future collaboration" >
 +
        <p>
 +
A brief description how a future collaboration with the TU Delft iGEM team could be formed.
 +
        </p>
 +
    </a>
 +
  </div>
 
</div>
 
</div>
  
 +
<div class="subimgrowm">
 +
<div class="whiterow">
 +
</div>
 +
</div>
 +
<div class="subimgrowm">
 +
<div class="subimgm">
 +
<a href="https://2015.igem.org/Team:KU_Leuven/Future" >
 +
    <b>Back
 +
</b>
 +
<img src="https://static.igem.org/mediawiki/2015/c/cb/KUL_Wiki_Button_-_Back.png" width="100%" ></a>
 +
</div>
 +
 +
<div class="whitespace">
 +
</div>
 +
 +
  <div class="subtextm">
 +
      <a href="https://2015.igem.org/Team:KU_Leuven/Future" >
 +
        <p>
 +
Go back to the Future page
 +
        </p>
 +
    </a>
 +
  </div>
 +
</div>
 +
 +
</div>
 +
</div>
  
 
<div id="summarywrapper">
 
<div id="summarywrapper">
 
<div class="summary">
 
<div class="summary">
<h3>
+
    <h3>
Contact
+
        Contact
</h3>
+
    </h3>
<p style="font-size:1.3em; text-align: center">
+
    <p style="font-size:1.3em; text-align: center">
Address: Celestijnenlaan 200G room 00.08 - 3001 Heverlee<br>
+
        Address: Celestijnenlaan 200G room 00.08 - 3001 Heverlee<br>
Telephone: +32(0)16 32 73 19<br>
+
        Telephone: +32(0)16 32 73 19<br>
Email: igem@chem.kuleuven.be<br>
+
        Email: igem@chem.kuleuven.be<br>
</p>
+
    </p>
 
</div>
 
</div>
 
</div>
 
</div>
Line 330: Line 860:
 
<div id="footer">
 
<div id="footer">
 
<div class="rowfooter">
 
<div class="rowfooter">
<div class="emptyfooter"></div>
+
    <div class="emptyfooter"></div>
<div id="bioscenter">
+
    <div id="bioscenter">
<a href="http://www.kuleuven.be/bioscenter/"><img alt="bioSCENTer"
+
        <a href="http://www.kuleuven.be/bioscenter/"><img alt="bioSCENTer"
src="https://static.igem.org/mediawiki/2015/3/3c/KU_Leuven_Logo_BioSCENTer.png"
+
            src="https://static.igem.org/mediawiki/2015/3/3c/KU_Leuven_Logo_BioSCENTer.png"
width="95%"></a>
+
            width="95%"></a>
</div>
+
    </div>
<div class="emptyfooter"></div>
+
    <div class="emptyfooter"></div>
 
</div>
 
</div>
  
 
<div class="rowfooter">
 
<div class="rowfooter">
<div id="lrd">
+
    <div id="lrd">
<a href="http://lrd.kuleuven.be/"><img alt="KU Leuven Research & Development"
+
        <a href="http://lrd.kuleuven.be/"><img alt="KU Leuven Research & Development"
src="https://static.igem.org/mediawiki/2015/b/b4/KU_Leuven_HR_LRD_CMYK_LOGO.jpg"
+
            src="https://static.igem.org/mediawiki/2015/b/b4/KU_Leuven_HR_LRD_CMYK_LOGO.jpg"
width="95%"></a>
+
            width="95%"></a>
</div>
+
    </div>
<div id="youreca">
+
    <div id="youreca">
<a href="http://www.kuleuven.be/onderzoek/youreca/"><img alt="YOURECA"
+
        <a href="http://www.kuleuven.be/onderzoek/youreca/"><img alt="YOURECA"
src="https://static.igem.org/mediawiki/2015/4/4f/KU_Leuven_YOURECA.png" width="95%"></a>
+
            src="https://static.igem.org/mediawiki/2015/4/4f/KU_Leuven_YOURECA.png" width="95%"></a>
</div>
+
    </div>
<div id="solvay">
+
    <div id="solvay">
<a href="http://www.solvay.com/"><img alt="SOLVAY"
+
        <a href="http://www.solvay.com/"><img alt="SOLVAY"
src="https://static.igem.org/mediawiki/2015/8/89/KU_Leuven_Solvay_Transparant.png"
+
            src="https://static.igem.org/mediawiki/2015/8/89/KU_Leuven_Solvay_Transparant.png"
width="95%"></a>
+
            width="95%"></a>
</div>
+
    </div>
<div id="medicine">
+
    <div id="medicine">
<a href="http://gbiomed.kuleuven.be/english"><img alt="Faculty of Medicine"
+
        <a href="http://gbiomed.kuleuven.be/english"><img alt="Faculty of Medicine"
src="https://static.igem.org/mediawiki/2015/8/83/KU_Leuven_Biomedische_Wetenschappen_logo_.png"
+
            src="https://static.igem.org/mediawiki/2015/8/83/KU_Leuven_Biomedische_Wetenschappen_logo_.png"
width="95%"></a>
+
            width="95%"></a>
</div>
+
    </div>
 
</div>
 
</div>
  
 
<div class="rowfooter">
 
<div class="rowfooter">
<div id="imec">
+
    <div id="imec">
<a href="http://www2.imec.be/be_en/home.html"><img alt="imec"
+
        <a href="http://www2.imec.be/be_en/home.html"><img alt="imec"
src="https://static.igem.org/mediawiki/2015/7/70/KU_Leuven_Imec_logo_transparant.png"
+
            src="https://static.igem.org/mediawiki/2015/7/70/KU_Leuven_Imec_logo_transparant.png"
width="95%"></a>
+
            width="95%"></a>
</div>
+
    </div>
<div id="genzyme">
+
    <div id="genzyme">
<a href="http://www.genzyme.be/"><img alt="Genzyme"
+
        <a href="http://www.genzyme.be/"><img alt="Genzyme"
src="https://static.igem.org/mediawiki/2015/b/b7/KU_Leuven_Genzyme_logo_transparant.png"
+
            src="https://static.igem.org/mediawiki/2015/b/b7/KU_Leuven_Genzyme_logo_transparant.png"
width="95%"></a>
+
            width="95%"></a>
</div>
+
    </div>
<div id="eppendorf">
+
    <div id="eppendorf">
<a href="https://www.eppendorf.com/BE-en/"><img alt="Eppendorf"
+
        <a href="https://www.eppendorf.com/BE-en/"><img alt="Eppendorf"
src="https://static.igem.org/mediawiki/2015/9/96/KU_Leuven_Logo_Eppendorf_transparant.png"
+
            src="https://static.igem.org/mediawiki/2015/9/96/KU_Leuven_Logo_Eppendorf_transparant.png"
width="95%"></a>
+
            width="95%"></a>
</div>
+
    </div>
<div id="kuleuven">
+
<div id="saillart">
<a href="http://www.kuleuven.be/english"><img alt="bioSCENTer"
+
      <a href="http://www.glasatelier-saillart.be/English/english.html"><img src="https://static.igem.org/mediawiki/2015/c/ce/KU_Leuven_Sponsor_Saillard.png" alt="Glasatelier Saillart" width="95%"></a>
src="https://static.igem.org/mediawiki/2015/0/08/KULEUVEN_groot.png" width="95%"></a>
+
  </div>
</div>
+
    <div id="kuleuven">
<div class="spacefooter"></div>
+
        <a href="http://www.kuleuven.be/english"><img alt="bioSCENTer"
<div id="gips">
+
            src="https://static.igem.org/mediawiki/2015/0/08/KULEUVEN_groot.png" width="95%"></a>
<a href="http://www.gipsmineral.de/"><img alt="Gips Mineral"
+
    </div>
src="https://static.igem.org/mediawiki/2015/3/3d/KU_Leuven_Gips_Mineral_logo_transparant.png"
+
    <div class="spacefooter"></div>
width="95%"></a>
+
    <div id="gips">
</div>
+
        <a href="http://www.gipsmineral.de/"><img alt="Gips Mineral"
<div id="kolo">
+
            src="https://static.igem.org/mediawiki/2015/3/3d/KU_Leuven_Gips_Mineral_logo_transparant.png"
<a><img alt="Ko-Lo Instruments"
+
            width="95%"></a>
src="https://static.igem.org/mediawiki/2015/1/15/KUL_Ko-Lo_Instruments_logo_transparant.png"
+
    </div>
width="95%"></a>
+
    <div id="kolo">
</div>
+
        <a><img alt="Ko-Lo Instruments"
<div id="regensys">
+
            src="https://static.igem.org/mediawiki/2015/1/15/KUL_Ko-Lo_Instruments_logo_transparant.png"
<a href="http://regenesys.eu/"><img alt="Regenesys"
+
            width="95%"></a>
src="https://static.igem.org/mediawiki/2015/e/eb/KU_Leuven_Logo_Regenesys_Transparant.png"
+
    </div>
width="95%"></a>
+
</div>
+
 
</div>
 
</div>
  
 
<div class="rowfooter">
 
<div class="rowfooter">
<div id="bioke">
+
    <div id="bioke">
<a href="https://www.bioke.com/"><img alt="Bioké"
+
        <a href="https://www.bioke.com/"><img alt="Bioké"
src="https://static.igem.org/mediawiki/2015/e/e1/KUL_Biok%C3%A9_logo_transparant.png"
+
            src="https://static.igem.org/mediawiki/2015/e/e1/KUL_Biok%C3%A9_logo_transparant.png"
width="95%"></a>
+
            width="95%"></a>
</div>
+
    </div>
<div id="thermofisher">
+
<div class="logonormal">
<a href="https://www.fishersci.com/us/en/home.html"><img alt="Thermo Fisher Scientific"
+
<div id="regensys">
src="https://static.igem.org/mediawiki/2015/a/aa/KUL_Fischer_Scientific_logo_transparant.png"
+
      <a href="http://regenesys.eu/"><img src="https://static.igem.org/mediawiki/2015/e/eb/KU_Leuven_Logo_Regenesys_Transparant.png" alt="Regenesys" width="95%"></a>
width="95%"></a>
+
  </div>
 +
<div class="whiterow"></div>
 +
  <div id="thermofisher">
 +
      <a href="https://www.fishersci.com/us/en/home.html"><img src="https://static.igem.org/mediawiki/2015/a/aa/KUL_Fischer_Scientific_logo_transparant.png" alt="Thermo Fisher Scientific" width="95%"></a>
 +
  </div>
 
</div>
 
</div>
 +
<div class="logonormal2">
 
<div id="vwr">
 
<div id="vwr">
<a
+
      <a href="https://be.vwr.com/store/?&_requestid=866148&_DARGS=/store/cms/be.vwr.com/nl_BE/header_20159241139103.jsp.1_AF&_dynSessConf=4047468000326453053&targetURL=/store/%3F%26_requestid%3D866148&lastLanguage=en&/vwr/userprofiling/EditPersonalInfoFormHandler.updateLocale=&_D%3AcurrentLanguage=+&currentLanguage=en&_D%3AlastLanguage=+&_D%3A/vwr/userprofiling/EditPersonalInfoFormHandler.updateLocale=+"><img src="https://static.igem.org/mediawiki/2015/8/8d/KU_Leuven_Logo_VWR_transparant_.png" alt="VWR" width="95%"></a>
href="https://be.vwr.com/store/?&_requestid=866148&_DARGS=/store/cms/be.vwr.com/nl_BE/header_20159241139103.jsp.1_AF&_dynSessConf=4047468000326453053&targetURL=/store/%3F%26_requestid%3D866148&lastLanguage=en&/vwr/userprofiling/EditPersonalInfoFormHandler.updateLocale=&_D%3AcurrentLanguage=+&currentLanguage=en&_D%3AlastLanguage=+&_D%3A/vwr/userprofiling/EditPersonalInfoFormHandler.updateLocale=+"><img alt="VWR"
+
  </div>
src="https://static.igem.org/mediawiki/2015/8/8d/KU_Leuven_Logo_VWR_transparant_.png"
+
<div class = "whiterow"></div>
width="95%"></a>
+
<div id="lgc">
 +
<a href="http://www.lgcgroup.com/our-science/genomics-solutions/#.Vfx9V9yLTIU">
 +
                <img src="https://static.igem.org/mediawiki/2015/e/e6/KU_Leuven_LOGO_LGC.png" alt="LGC Genomics" width="80%">
 +
</a>
 
</div>
 
</div>
<div id="footerimg">
 
<img
 
src="https://static.igem.org/mediawiki/2015/b/b9/KU_Leuven_Zebra_spots_wiki_footer_main.png"
 
width="95%">
 
 
</div>
 
</div>
<div id="gimv">
+
    <div id="footerimg">
<a href="http://www.gimv.com/en"><img alt="Gimv"
+
        <img
src="https://static.igem.org/mediawiki/2015/a/ac/KU_Leuven_Logo_Gimv_Transparant.png"
+
            src="https://static.igem.org/mediawiki/2015/b/b9/KU_Leuven_Zebra_spots_wiki_footer_main.png"
width="95%"></a>
+
            width="95%">
</div>
+
    </div>
<div id="machery">
+
<div class="logonormal2">
<a href="http://www.filterservice.be/"><img alt="Machery Nagel"
+
<div id="gimv">
src="https://static.igem.org/mediawiki/2015/4/41/KU_Leuven_Macherey_Nagel_logo_transparant.png"
+
      <a href="http://www.gimv.com/en"><img src="https://static.igem.org/mediawiki/2015/a/ac/KU_Leuven_Logo_Gimv_Transparant.png" alt="Gimv" width="95%"></a>
width="95%"></a>
+
  </div>
 +
<div class = "whiterow"></div>
 +
<div id="sopach">
 +
      <a href="http://www.sopachem.com/"><img src="https://static.igem.org/mediawiki/2015/5/55/KU_Leuven_Sopachem.jpeg" alt="Sopachem" width="95%"></a>
 +
  </div>
 
</div>
 
</div>
 +
    <div id="machery">
 +
        <a href="http://www.filterservice.be/"><img alt="Machery Nagel"
 +
            src="https://static.igem.org/mediawiki/2015/4/41/KU_Leuven_Macherey_Nagel_logo_transparant.png"
 +
            width="95%"></a>
 +
    </div>
 
<div class="logosmall">
 
<div class="logosmall">
<div id="sigma">
+
    <div id="sigma">
<a href="https://www.sigmaaldrich.com/belgium-nederlands.html"><img alt="Sigma-Aldrich"
+
      <a href="https://www.sigmaaldrich.com/belgium-nederlands.html"><img src="https://static.igem.org/mediawiki/2015/4/4b/KUL_Sigma-Aldrich_logo_transparant.png" alt="Sigma-Aldrich" width="95%"></a>
src="https://static.igem.org/mediawiki/2015/4/4b/KUL_Sigma-Aldrich_logo_transparant.png"
+
    </div>
width="95%"></a>
+
    <div class="whiterow"></div>
</div>
+
    <div id="egilab">
<div id="egilabo">
+
      <a href="http://www.egilabo.be/"><img src="https://static.igem.org/mediawiki/2015/e/e9/KUL_Egilabo_logo_transparant.png" alt="Egilabo" width="95%"></a>
<a href="http://www.egilabo.be/"><img alt="Egilabo"
+
    </div>
src="https://static.igem.org/mediawiki/2015/e/e9/KUL_Egilabo_logo_transparant.png"
+
    <div class="whiterow"></div>
width="95%"></a>
+
    <div id="novolab">
</div>
+
      <a href="https://www.novolab.be/"><img src="https://static.igem.org/mediawiki/2015/4/4c/KU_Leuven_Novalab.png" alt="Novolab" height="95%"></a>
</div>
+
    </div>
 +
  </div>  
 
</div>
 
</div>
 
</div>
 
</div>
Line 453: Line 995:
 
   */
 
   */
 
function scroll_if_anchor(href) {
 
function scroll_if_anchor(href) {
     href = typeof(href) == "string" ? href : $(this).attr("href");
+
     href = typeof(href) == "string"
 +
        ? href
 +
        : $(this).attr("href");
  
 
     // If href missing, ignore
 
     // If href missing, ignore
     if(!href) return;
+
     if (!href)  
 
+
        return;
 +
   
 
     // You could easily calculate this dynamically if you prefer
 
     // You could easily calculate this dynamically if you prefer
 
     var fromTop = 500;
 
     var fromTop = 500;
Line 467: Line 1,012:
 
     // Older browsers without pushState might flicker here, as they momentarily
 
     // Older browsers without pushState might flicker here, as they momentarily
 
     // jump to the wrong position (IE < 10)
 
     // jump to the wrong position (IE < 10)
     if($target.length) {
+
     if ($target.length) {
         $('html, body').animate({ scrollTop: $target.offset().top - fromTop });
+
         $('html, body').animate({
         if(history && "pushState" in history) {
+
            scrollTop: $target.offset().top - fromTop
 +
        });
 +
         if (history && "pushState" in history) {
 
             history.pushState({}, document.title, window.location.pathname + href);
 
             history.pushState({}, document.title, window.location.pathname + href);
 
             return false;
 
             return false;
 
         }
 
         }
 
     }
 
     }
}  
+
}
  
 
// When our page loads, check to see if it contains and anchor
 
// When our page loads, check to see if it contains and anchor

Latest revision as of 10:06, 20 October 2015

Economic Potential Analysis

An economic rationale analysis for investing in the use of micro-organisms for the production of artificial bone implants

Because our research contributes to the base of fundamental knowledge, it could be used as preliminary research for many applications. A brief look into the future potential, from an economic perspective, could possibly offer the rationale for a deeper research into the application. As we will see, there are many opportunities and challenges that pop up and need to be addressed, even in this early stage of the project. The main goal of this potential analysis is to construct a bridge between the pure scientific research and the commercial environment, resulting in a marketable product. In this analysis, we mainly focus on the use of Spot E.Shape principles to discover novel ways of producing artificial bone replacements . A similar analysis can be made for each of the other applications of the project. For more details on the other applications, please go to the application page.


.


Figure 1
A preview of how the artificial bone implant could look like.


A deeper understanding of the market and industry dynamics in the bone-implant industry

Nowadays, elderly people are more active than ever before. They cycle, play tennis, go swimming, travel, etc. Besides, they do not want to give up on those activities because of their age. Nevertheless, the risk of accidents with possibly serious health consequences and broken limbs grows with age. Approximately 1% of all falls of elderly people result in a hip fracture with an acute mortality of 3%-5%. (2)



The ageing population and active life-style trends are two major driving forces for the demand of orthopaedic devices. Apart from that, the medical world is confronted with an increasing number of obesity and osteoporosis patients. These factors result in an enhanced growth of the orthopaedic industry. Medical device companies respond by continuously looking for new ways of treating fractured bones in order to reduce the curing time and to obtain a more performant device.



A closer look into the industry dynamics reveals that the industry is highly regulated and very dynamic where most of the industry players are well-established small and medium-size enterprises (SME’s). A start-up company often needs a significant better product to gain some market share in the medical device industry. Many of them choose to first enter a niche market to establish some early market share. Once they obtained a solid position in the industry, they can broaden their horizon by reaching out to new, unexplored markets.

Relevance of using traditional materials for bone implants

Traditionally orthopaedic devices have titanium alloys as the dominant material used in most artificial bone implants. However alternatives with new and better functions, lower failure rates and less resource demanding are finding their way to the industry. One of the most promising examples is tissue engineering where the cells from a patient or a donor are isolated. Thereafter, they are combined with biomaterials, grown in laboratories and then implanted into the patient. This approach is becoming more and more a reality due to technological advancements. However there are some major concerns and drawbacks that prevent this technology to really break through in the market for medical devices. The limited viable window from the point of extraction of cells to the reintroduction makes this technology less flexible.(9) The transportation of these cells to and from the laboratory is also a huge challenge. Besides, the storage of tissue engineered products (TEP) at a constant temperature of -32°C puts pressure on the cost-efficiency.(9) On top of that, TEP's in Europe suffered a lot under the the lack of regulation. They are beyond the medical device regulation and the pharmaceutical regulation.(9) This ambiguity concerning the regulation in Europe leads to a strong delay in market introduction. At the moment there is no dominant supply model based on mass production due to capacity limitations. This prevents TEP’s from really breaking through and becoming the industrially standard technology.(9)



In the last decade, composite materials, polymers and ceramics steadily found their way to the medical device industry. This is mainly due to the lower failures rates, recalls and weight. Most materials also suffer from substantial wear effects.The particles that come loose during the process could possibly have a negative effect on the human health. The trend to use more eco-friendly and less scarce materials which are produced in a sustainable way is pushing the need for new materials. With our Spot E.Shape project, we would like to take this to the next level by imitating the natural bone structure as much as possible through the use of micro-organisms.

The positive consequences of using micro-organisms for bone engineering

Spot E.Shape can be used for the construction of a wide range of bone prosthesis. Here we focus on hip prosthesis. These are of particular interest because they still result in a high acute mortality rate and the risk of complications serious shortens the life expectancy of the patient. Thus it is useful to look for new ways to produce hip implants.



Recently, surgeons are using a 3D printed implants made of titanium, polymers or ceramics for hip transplantations. Here the patient’s CT scan is used to design an exact replica of the femoral head. Our project could optimize this design by using bacteria that form and precipitate calcium phosphate in a controlled way. From there a porous, spongy structure similar to the bone can be formed. It's possible that these bacteria have to be supported by some structure (e.g. titanium frame) to receive the necessary characteristics for the hip implant. Thereafter, this technique can also be used as a surface coating for the titanium alloy, so that the wear effects will be far less.



In order to identify and deal with the competitive implications of the so called salient attributes, we used the ACE Matrix (Attribute Categorization and Evaluation) by Ian C. MacMillan and Rita Gunther McGrath (7) applied to our orthopaedic device. The columns refer to the level of energy the attribute generate for the customer while the rows refer to the sentiment it provokes. (7) This analytic tool serves to identify the right mix and dynamic fit between the customer needs and the attributes of the product.(7) Particularly interesting are the powerful energizers that often become the determining factor for the purchase decision. The layer of calcium deposited by the bacteria can be seen as a coating for the titanium structure which reduces substantially the amount of constraint and wear of the prosthesis (Energizer). Wear is something that more traditional metallic and polyethylene prosthesis have to deal with. Other reasons why customers would be willing to buy our product (compared to the competitor's one), are its eco-friendliness and low material cost (possibly lower price).



Do you approve synthetic biology in general


Figure 2
The ACE-matrix by MacMillan and McGrath(7) applied to our orthopaedic device based on micro-organisms. Click to enlarge


An important issue is that dissatisfiers can encourage the customers (mostly surgeons) to opt for a competitor which reduces customer loyalty.(7) In the case of our medical device, it is crucial to conduct long-term experiments to test possible health effects. The process of bacteria removal could also evoke serious customer concerns which could lead customers to choose for a competitor. An effective method in combination with lots of customer information campaigns are two ways to deal with this dissatisfier. Additionally already in the prototyping phase, we need to start thinking about possible ways to automate and fasten the production process. This could reduce the price of the product and at the same time the wait-to-delivery time. On the other hand, a competitor’s action can turn a tolerable into a dissatisfier, e.g. the competitor eliminates a negative characteristic. To be one step ahead of competition, we need to monitor continuously our product quality.



We have to remark that the validation phase concerning the customer perceptions of attributes still needs to be performed. Keep also in mind that this analysis is a foresight for a medical device application, which implies that at this stage, not every attribute can be proved scientifically.

Barriers for the market introduction of orthopaedic materials based on micro-organisms

Introducing a brand new technology often comes with some major challenges to overcome. In this section, we are focusing on the different potential issues that need to be addressed in further stages of the project. We identify three of them, namely the financial gap, regulation gap and human capital gap.



Financial gap
Orthopaedic research is often time-consuming and requires a substantial investment during the development, production and distribution phase before it can be translated into a final product for patient care.(1) During the current proof-of-concept phase of the project, we already experienced a clear need for financials. Radical innovations typically need large investments in further technological development before a first working prototype can be constructed and tested. (4) From the perspective of potential investors, there is a lot of uncertainty about the outcome which will probably lead to a long payback time and thus few economic incentives to invest in this early stage of the project. (12) The phenomenon of investor reluctance is often described as ‘the financial barrier’ which plays a role on the level of private financiers, such as banks and venture capital firms.(6) The need for government stimulants through specialised funding programs is clearly present.(10) This is underlined by the fact that publicly funded venture capital firms are more willing to consider investing in early-stage university spin-outs than private ones.(5)



Next is the pre-seed funding phase that further explores managerial and organisational aspects of the project in order to make it more attractive for potential investors.(10) In the proof-of-concept phase, government funding mainly serves the role of reducing the technological uncertainty while the reduction of the organisational uncertainty is mainly the purpose of pre-seed funding. For this phase we are currently fully relying on sponsorship from the industry and university organisations. The option of applying for a governmental grant remains possible for further stages.



The third major phase or seed phase takes place when the company is established, but basically it does not generate enough cash flow to survive on its own. For their early investments, investors are often given an equity stake in return. Attracting venture capital investors remains difficult because they prefer to invest in university spin-outs after the seed phase, when the research and following application proved to be robust.(14) Possible investors should be found in the industry, angel investors, crowd funding, government, etc.



When a company grows, at some point in time there will be an immediate financial need that is too high to bear for traditional investors. Often regional and national venture capital firms are then the only option to turn at. However involving venture capital firms should be a well-considered decision. They bring along a new working culture, make demands (e.g. hiring professional managers and administrators) and put pressure on the firm to get the necessary in-house competences. All of this is done with respect to the return-on-investment they need so desperately regarding their 10-year horizon.(13) This could lead to tremendous progress for the company or they can break up with the company in the long term if they don't receive a high enough return-on-investment.(13)



Regulation gap
A lack of regulation can be considered as double-edged, where it shortens the product innovation cycle but at the same time makes marketing your product more complicated. Orthopaedic devices are normally classified as a medical device and fall within the European medical device regulation. To be issued with a CE mark, medical devices must achieve high quality, safety and performance standards.(9) However the specificity of our device, which is based on the precipitation by bacteria, could possibly be subject to the regulation of genetically modified organisms. The narrow legal framework concerning GMO's in Europe could affect and delay the innovation process of our orthopaedic device. The ambiguity and lack of clarity to which regulation our application can be applied, shows the need for the realignment of regulation with practice and current state-of-technology.(3)



Human capital gap
Knockaert et al. suggested that “One of the principal challenges facing university spin-outs is academic entrepreneurs tending to possess little commercial human capital.”(5) The fact that they are experts in their domain does not make them the perfect marketers for their product. As showed above, the orthopaedic industry is characterised by a certain set of aspects. Appropriate managers will more likely find more adapted ways of dealing with these differences. Besides there are possible conflicts of interest with the traditional roles of research and teaching that might pop up when academic entrepreneurs need to run a business.(10) Raising venture capital should also be done by an entrepreneur who possesses lots of commercial human capital. This shows clearly that the different challenges are interrelated.(5)

Desired approach for the market introduction

The orthopaedic device industry is currently confronted with a rising demand for new orthopaedic hip prosthesis. To deal with this, we came up with a brand new device based on the use of bacteria. However we described three major barriers that can potentially disturb the realization of its economic potential. The purpose of this section is not to provide an exhaustive description of a go-to-market-strategy or business plan, but rather briefly offering some guidelines that need to be kept in mind to secure a bright future perspective.



Parallel to tissue engineered products, where they also work with cells(10), the end product is highly customized and falls under the ‘Make to Order’ approach. In view of the high demand of orthopaedic products, this will not be sufficient to establish a competitive supply model that is capable of gathering a significant part of the market. The way to deal with this obstacle should be to identify all the parts that can be automated and scaled-up already in an early stage of the development process in order to satisfy a mass market.(10) In order to commercialize the device, there should also be thought off patenting the invention. The Bayh–Dole-inspired legislation made this possible for universities and was adopted by many countries in their national regulation. (9)



There comes a time when you can not do everything on your own anymore, especially in an industry where multiple disciplines overlap and different competences are needed. The interdisciplinary aspect is one way to explain the search for the right strategic partner to forge an alliance with. The reduction of technological uncertainty in the early phases of a project could be a second reason for collaboration with a partner from industry. (10) This will make the search for potential investors a lot easier and reduce the time-to-market for the application. This is also often the phase where a university spin-off is created, which acts like an independent business.



.


Figure 3
Illustration of the multidisciplinarity of the hip bone implant industry. Click to enlarge


Anecdotal evidence states that it is very hard to become profitable as a company from the start. However the goal of taking market share by aiming at a niche market is a much more realistic objective than reaching a positive cash flow. Once this is obtained, the company will be considered as an interesting investment for the big medical device companies which will be eager to take over the company. However if the ultimate goal of market share is not reached, the company will not generate a breakthrough and succumb rapidly.(13)



References

[1] Joseph A. Buckwalter and Timothy M. Wright. Orthopaedic surgeons, scientists, and industry. Journal of Orthopaedic Research, 26(3):279-280, March 2008. [ http ]
[2] Colleen Christmas. Hip Fracture. Annals of Internal Medicine, 155(11):ITC6-1, December 2011. [ DOI ]
[3] C. Freeman and C. Perez. Structural crises of adjustment, business cycles and investment behaviour. Pinter, London, 1988.
[4] Richard Jensen and Marie Thursby. Proofs and prototypes for sale: The licensing of university inventions. The American Economic Review, 91(1):240-259, March 2001.
[5] Mirjam Knockaert, Mike Wright, Bart Clarysse, and Andy Lockett. Agency and similarity effects and the VC's attitude towards academic spin-out investing. Journal of Technology Transfer, 35(6):567-584, December 2010. [ DOI ]
[6] Andy Lockett, Gordon Murray, and Mike Wright. Do UK venture capitalists still have a bias against investment in new technology firms. Research Policy, 31(6):1009-1030, August 2002. [ DOI | .pdf ]
[7] Ian C. MacMillan and Rita Gunther McGrath. Discover your products hidden potential. Harvard Business Review, 74(3):58, 1996.
[8] Nitin Pangarkar and Dietmar W Hutmacher. Invention and business performance in the tissue-engineering industry. Technical Report 6, 2003. [ DOI ]
[9] Wendy Phillips, Thomas Johnsen, Nigel Caldwell, and Julian B. Chaudhuri. The difficulties of supplying new technologies into highly regulated markets: the case of tissue engineering. Technology Analysis & Strategic Management, 23(3):213-226, March 2011. [ http ]
[10] Einar Rasmussen, Simon Mosey, and Mike Wright. The Evolution of Entrepreneurial Competencies: A Longitudinal Study of University Spin-Off Venture Emergence. Journal of Management Studies, 48(6):1314-1345, September 2011. [ DOI | http ]
[11] Einar Rasmussen and Roger Sø rheim. How governments seek to bridge the financing gap for university spin-offs: proof-of-concept, pre-seed, and seed funding. Technology Analysis & Strategic Management, 24(7):663-678, August 2012. [ DOI | http ]
[12] Scott Shane. Academic entrepreneurship: University spinoffs and wealth creation, volume 30. 2004. [ DOI | http ]
[13] Alexander Styhre. Coping with the financiers: attracting venture capital investors and end-users in the biomaterials industry. Technology Analysis & Strategic Management, 00(0):1-13, 2014. [ http ]
[14] Mike Wright, Andy Lockett, Bart Clarysse, and Martin Binks. University spin-out companies and venture capital. Research Policy, 35(4):481-501, May 2006. [ DOI | .pdf ]

Contact

Address: Celestijnenlaan 200G room 00.08 - 3001 Heverlee
Telephone: +32(0)16 32 73 19
Email: igem@chem.kuleuven.be