Difference between revisions of "Team:EPF Lausanne/Test"

Line 1: Line 1:
 +
<!--DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">-->
 
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en" dir="ltr">
 
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en" dir="ltr">
 
   <head>
 
   <head>
Line 20: Line 21:
 
   max-height:50%;
 
   max-height:50%;
 
}
 
}
body {
+
 
      position: relative;
+
img.resize30{
  }
+
     max-width:30%;
  ul.nav-pills {
+
     max-height:30%;
      top: 20px;
+
      position: relative;
+
  }
+
table, th, td {
+
     border: 1px solid grey;
+
     border-collapse: collapse;
+
}
+
th, td {
+
    padding: 10px;
+
 
}
 
}
 
</style>
 
</style>
Line 57: Line 49:
 
     <!-- Footer -->
 
     <!-- Footer -->
 
     <link rel="stylesheet" href="https://2015.igem.org/Team:EPF_Lausanne/css/footer?action=raw&amp;ctype=text/css" type="text/css">
 
     <link rel="stylesheet" href="https://2015.igem.org/Team:EPF_Lausanne/css/footer?action=raw&amp;ctype=text/css" type="text/css">
 
  
 
     <script src="https://2015.igem.org/Team:EPF_Lausanne/Test/js/mordernizr-2.6.2?action=raw&amp;ctype=text/js"></script>
 
     <script src="https://2015.igem.org/Team:EPF_Lausanne/Test/js/mordernizr-2.6.2?action=raw&amp;ctype=text/js"></script>
Line 77: Line 68:
 
                             <i class="fa fa-bars"></i>
 
                             <i class="fa fa-bars"></i>
 
                         </button>
 
                         </button>
 +
                        <!--<a class="navbar-brand" href="https://2015.igem.org/Team:EPF_Lausanne">Bio Logic</a>-->
 
                         <a href="https://2015.igem.org/Team:EPF_Lausanne"><img src="https://static.igem.org/mediawiki/2015/9/95/EPF_Lausanne_BIOLOGIC_BLANC.png"></a>
 
                         <a href="https://2015.igem.org/Team:EPF_Lausanne"><img src="https://static.igem.org/mediawiki/2015/9/95/EPF_Lausanne_BIOLOGIC_BLANC.png"></a>
 
                     </div>
 
                     </div>
Line 130: Line 122:
 
         </div>
 
         </div>
 
     </div> <!-- .site-header -->
 
     </div> <!-- .site-header -->
               
 
           
 
  
     <div class="page-h promotion">
+
 
 +
    <!-- SLIDER -->
 +
     <div class="site-slider">
 +
        <div class="flexslider">
 +
            <ul class="slides">
 +
                <li class="slide">
 +
                    <div class="overlay"></div>
 +
                    <img src="https://static.igem.org/mediawiki/2015/f/ff/EPF_Lausanne_RLC_BW.jpg" alt="">
 +
                    <div class="slider-caption">
 +
                        <!--<div class="title">
 +
                            <h2>Find out about our project</h2>
 +
                        </div>-->
 +
                        <a href="https://2015.igem.org/Team:EPF_Lausanne/Project/Description" class="slider-button">Find out about our project</a>
 +
                    </div>
 +
                </li>
 +
            </ul>
 +
        </div> 
 +
    </div> <!-- .site-slider -->
 +
 
 +
    <div id="Start" class="second-section">
 
         <div class="container">
 
         <div class="container">
 
             <div class="row">
 
             <div class="row">
                 <div class="col-md-12 text-center">
+
                 <div class="col-md-8 col-centered">
                     <h3>Protocols</h3>
+
                     <h3>Biologic Orthogonal GRNA-Implemented Circuit</h3>
 +
                    <p>This summer, the EPFL iGEM team strives to pave the way for simpler implementation of digital circuits in vivo. Using the newly discovered dCas9 as a synthetic transcription factor, we aim to design biocompatible transistor-like elements. Our ultimate goal is to make cells smarters by assembling these transistors into logic gates that are both chainable and parallelizable in a homogenous logic framework.</p>
 +
                    <h2>Thinking Binary</h2>
 +
                    <p>Boolean Logic is the bedrock of the digital revolution. Developed by George Boole in the mid-19th century, it is based on a simple set of values: 0 (“FALSE”) or 1 (“TRUE”). Modern computers represent all forms of information using strings of the same 0s and 1s (also named “Bits”). The processing of bits is handled by logical transistors - which can be seen as electronically controllable switches. Elementary logic operation are performed using cleverly assembled transistors. Such assemblies are named “logic gates”. Gates are the bricks with which complex behaviour is produced.</p>
 +
                    <h2>Biological computers</h2>
 +
                    <p>Since the early 2000’s, multiple synthetic biological gates have been built, revolutionizing our ability to dictate the way organisms react to stimuli. Their applications range from intelligent biosensors to cellular therapeutics with improved in vivo targeting and curing.<br>
 +
                    Unfortunately, the development of programmable cells has been hampered by difficulties in the multiplication and chaining of logic elements. This has hindered the complexification of bio-circuits as well as the automation and flexibility of their design.<br>
 +
                    To overcome these limitations, an ideal in vivo logic element should be modular, reusable, and orthogonal - i.e avoiding unwanted cross-talk with its host organism as well as other elements of the engineered circuit.</p>
 +
                    <h2>Cas9 Logic Gates</h2>
 +
                    <p>Cas9 (CRISPR associated protein 9) is an RNA-guided DNA endonuclease that targets and cleaves any DNA sequence complementary to its guide RNA (gRNA). Our project will be based upon a derivative of this technology : catalytically “dead” Cas9 (dCas9) that lack the ability to cleave DNA. When fused to a RNA polymerase (RNAP) recruiting element (e.g. the omega subunit of RNAP in E. Coli or VP64 in eukaryotes), chimeric dCas9 can act as a  programmable transcription activator. In addition, activating dCas9 may also act as a DNA transcription inhibitor: depending on its gRNA-determined binding site, it has been shown in yeasts to sterically hinder RNAP recruitment to promoter sequences.<br>
 +
                    Exploiting dCas9-omega/VP64’s ambivalence, we propose the creation of gRNA-controlled switch-like elements analogous to transistors. The state of the switch would be solely dependent on the position of dCas9 relative to the promoter. The content of the gRNA-targeted sequences might therefore be designed such that each transistor is orthogonal to other logic elements. Using gRNA to make what could be seen as “biological wires”,  we also hope to achieve chainability of the transistors and thus complexification of bio-circuits.</p> 
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
 
         </div>
 
         </div>
 
     </div>
 
     </div>
 
    <body data-spy="scroll" data-target="#myScrollspy" data-offset="20">
 
    <div class="first-section">
 
        <div class="row">
 
            <div class="col col-md-3">
 
                <nav id="affix-nav" class="sidebar hidden-sm hidden-xs">
 
                <ul class="nav nav-pills nav-stacked" data-spy="affix" data-offset-top="200" data-offset-bottom="600">
 
                <li class="active"><a href="#agarosegel">Agarose Gel</a></li>
 
                <li><a href="#aminoacidsolution">Amino Acid Solution</a></li>
 
                <li><a href="#colonypcr">Colony PCR</a></li>
 
                <li><a href="#gibsonassembly">Gibson Assembly</a></li>
 
                <li><a href="#miniprep">Miniprep</a></li>
 
                <li class="dropdown">
 
                  <a class="dropdown-toggle" data-toggle="dropdown" href="#">Polymerase Chain Reaction (PCR)<span class="caret"></span></a>
 
                  <ul class="dropdown-menu">
 
                    <li><a href="#phusionpcr">Phusion PCR</a></li>
 
                    <li><a href="#taqpcr">Taq PCR</a></li>                   
 
                  </ul>
 
                </li>
 
    <li><a href="#pcrpurification">PCR Product Purification</a></li>
 
    <li><a href="#pegliac">PEG/LiAc Solution</a></li>
 
    <li><a href="#sdmedium">SD Medium</a></li>
 
    <li><a href="#transformation">Transformation</a></li>
 
 
    <!-- ADD SECTIONS HERE -->
 
       
 
 
    </ul>
 
            </nav></div>
 
            <div class="col-sm-9">
 
 
    <!-- AGAROSE GEL -->
 
              <div id="agarosegel" class="panel">   
 
                <h1>Agarose Gel</h1>
 
            <h2>Materials</h2>
 
        <p> • 1X TAE <input type="checkbox" id="checkbox-1-1" class="regular-checkbox" /><label for="checkbox-1-1"></label></p>
 
        <p> • Agarose <input type="checkbox" id="checkbox-2-1" class="regular-checkbox big-checkbox" /><label for="checkbox-2-1"></label></p>
 
        <p> • Gel Red</p>
 
        <p> • DNA samples</p>
 
        <p> • 6X loading dye</p>
 
        <p> • Nuclease free water</p>
 
        <h2>Procedure</h2>
 
        <p>Prepare 1.2% agarose gel for small fragments and 3% agarose gel for large fragments</p>
 
        <p> • Mix 50 mL 1X TAE and 0.6 g (1.2%) or 1.5 g (3%) agarose</p>
 
        <p> • Melt in microwave until agarose has melted (about 50 seconds)</p>
 
        <p> • Add 1.3 μL (1.2%) or 1.5 μL (3%) Gel Red</p>
 
        <p> • Pour solution into agarose gel mold with comb</p>
 
        <p> • Let set for 20 minutes or until solid</p>
 
        <p> • Place gel in 1X TAE and remove comb</p>
 
        <p> • Load samples of 200 ng (or 2  μL) DNA mixed with 2  μL 6X loading dye and nuclease free water up to 12  μL</p>
 
        <p> • Run gel at 100-120 Volts for 40-50 minutes (1.2%) or 80 Volts for 2 hours (3%)</p>
 
        <p> • Take a picture of the gel at the UV detector</p>
 
              </div>
 
 
    <!-- AMINO ACID SOLUTION -->
 
              <div id="aminoacidsolution" class="panel">
 
                <h1>Amino acid solution</h1>
 
        <h2>Materials</h2>
 
        <p> • Histidine-Hcl</p>
 
        <p> • Uracil</p>
 
        <p> • Leucine</p>
 
        <p> • Tryptophan</p>
 
        <h2>Procedure</h2>
 
        <table width="100%">
 
            <tr>
 
                <th>Stock concentration</th>
 
                <th>Final concentration</th>
 
                <th>Total quantity for 50 mL</th>
 
            </tr>
 
            <tr>
 
                <td>100 mM Histidine-Hcl (209 g/mol)</td>
 
                <td> 20.9 g/L</td>
 
                <td> 0.418 g</td>
 
            </tr>
 
            <tr>
 
                <td>20 mM Uracil (112 g/mol)</td>
 
                <td> 2.24 g/L</td>
 
                <td> 0.0448 g</td>
 
            </tr>
 
            <tr>
 
                <td>100 mM Leucine (131 g/mol)</td>
 
                <td> 13.1 g/L</td>
 
                <td> 0.262 g</td>
 
            </tr>
 
            <tr>
 
                <td>40 mM Tryptophan (204 g/mol)</td>
 
                <td> 8.16 g/L</td>
 
                <td> 0.1632 g</td>
 
            </tr> 
 
        </table>   
 
        <p> • Filter and sterilize solutions</p>
 
        <p> • Add 8 mL per liter of selective medium or spread 500 μL on a selective plate</p>
 
              </div>       
 
 
<!-- COLONY PCR -->
 
<div id="colonypcr" class="panel">       
 
<h1>Colony PCR</h1>
 
<h2>Materials</h2>
 
    <p> • Materials for Taq PCR (except template plasmid DNA)</p>
 
    <p> • Petri dish with transformed colonies</p>
 
<h2>Procedure</h2>
 
    <p> • Prepare 25 μL reactions as in Taq PCR Protocol without template DNA</p>
 
            <p> • With a sterile tip, under the flame, scrape part of a single colony and add to PCR tubes</p>
 
    <p> • Mix by pipetting up and down or flicking the reactions
 
    <p> • Put tubes in thermocycler with cycling conditions as described in Taq PCR Protocol</p>
 
</div>
 
 
    <!-- GIBSON ASSEMBLY -->
 
<div id="gibsonassembly" class="panel">
 
<h1>Gibson Assembly - based on NEB Gibson Assembly Protocol</h1>
 
<h2>Materials</h2>
 
    <p> • DNA fragments</p>
 
    <p> • 2X Gibson Assembly Mater Mix (NEB)</p>
 
    <p> • 2X NEBuilder Positive Control (NEB)</p>
 
    <p> • Deionized water</p>
 
<h2>Procedure</h2>
 
    <p> • Set up following reactions on ice, adding Gibson Assembly Master Mix last:</p>
 
    <table width="100%">
 
        <tr>
 
        <th>Component</th>
 
        <th>2 – 3 Fragments Assembly</th>
 
        <th>4 – 6 Fragments Assembly</th>
 
        <th>Positive Control</th>
 
        </tr>
 
        <tr>
 
        <td>Total Amount of Fragments</td>
 
        <td>0.02 – 0.5 pmols</td>
 
        <td>0.2 – 1 pmols</td>
 
        <td>10 μL</td>
 
        </tr>
 
        <tr>
 
        <td>2X Gibson Assembly Master Mix</td>
 
        <td>10 μL</td>
 
        <td>10 μL</td>
 
        <td>10 μL</td>
 
        </tr>
 
        <tr>
 
        <td>Deionized water  </td>
 
        <td>to 20 μL</td>
 
        <td>to 20 μL</td>
 
        <td>0 μL</td>
 
        </tr>
 
    </table>
 
    <p>          Optimized efficiency for 50 – 100 ng of vectors and 2 – 3 fold of excess inserts</p>
 
    <p> • Incubate samples at 50°C for 15 minutes (2 – 3 fragments) or for 60 minutes (4 – 6 fragments)</p>
 
    <p> • Store samples on ice or at -20°C until transformation</p>
 
    <p> • Transform competent cells following the Transformation Protocol</p>
 
</div>
 
 
<!-- MINIPREP -->
 
<div id="miniprep" class="panel">       
 
<h1>Miniprep - with QIAprep Spin Miniprep Kit (QIAGEN)</h1>
 
<h2>Materials</h2>
 
    <p> • Bacterial overnight liquid cultures (1 - 5 mL)
 
    <p> • QIAprep Spin Miniprep Kit
 
<h2>Procedure</h2>
 
    <p> • Pellet 1 -5 mL bacterial culture by centrifugation at more than 8000 rpm for 3 minutes</p>
 
    <p> • Resuspend pelleted bacterial cells in 250 μL P1 buffer and transfer to a microcentrifuge tube</p>
 
    <p> •  Add 250 μL P2 buffer and mix by inverting tube 4 – 6 times</p>
 
    <p> • Add 350 μL N3 buffer and mix by inverting tube 4- 6 times</p>
 
    <p> • Centrifuge for 10 min at 13000 rpm</p>
 
    <p> • Apply supernatant to the QIAprep spin column by pipetting, centrifuge for 30 – 60 seconds and discard flow-through</p>
 
    <p> • Wash the QIAprep spin column by adding 0.5 mL PB buffer, centrifuge for 30 – 60 seconds and discard flow-through</p>
 
    <p> • Wash the QIAprep spin column by adding 0.75 mL PE buffer, centrifuge for 30 – 60 seconds and discard flow-through</p>
 
    <p> • Centrifuge for 1 minute to remove residual wash buffer</p>
 
    <p> •  Elute DNA by placing QIAprep column in a clean 1.5 mL microcentrifuge tube and adding 50 μL EB buffer or water (or less for higher concentration). Let stand for 1 minute and centrifuge for 1 minute</p>
 
</div>
 
 
<!-- PHUSION PCR -->
 
<div id="phusionpcr" class="panel">               
 
<h1>Phusion PCR – based on NEB Phusion PCR Protocol</h1>
 
<h2>Materials</h2>
 
    <p> • 5X Phusion HF or GC Buffer</p>
 
    <p> • dNTPs</p>
 
    <p> • Forward and Reverse Primers</p>
 
    <p> • Template plasmid DNA</p>
 
    <p> • Phusion DNA polymerase</p>
 
    <p> • Nuclease Free Water</p>
 
<h2>Procedure</h2>
 
    <p> • Prepare following reaction in 0.5 mL PCR tubes on ice, adding polymerase last:</p>
 
    <table width="100%">
 
    <tr>
 
        <th>Component</th>
 
        <th>20 μL reaction</th>
 
        <th>50  μL reaction</th>
 
    </tr>
 
    <tr>
 
        <td>5X Phusion HF or GC Buffer</td>
 
        <td>4 μL</td>
 
        <td>10 μL</td>
 
    </tr>
 
    <tr>
 
        <td>10 mM dNTPs</td>
 
        <td>0.4 μL</td>
 
        <td>1 μL</td>
 
    </tr>
 
    <tr>
 
        <td>10 mM Forward Primer</td>
 
        <td>1 μL</td>
 
        <td>2.5 μL</td>
 
    </tr>
 
    <tr>
 
        <td>10 mM Reverse Primer</td>
 
        <td>1 μL</td>
 
        <td>2.5 μL</td>
 
    </tr>
 
    <tr>
 
        <td>Template plasmid DNA</td>
 
        <td>1 pg – 10 ng</td>
 
        <td>1 pg – 10 ng</td>
 
    </tr>
 
    <tr>
 
        <td>Phusion DNA Polymerase</td>
 
        <td>0.2 μL</td>
 
        <td>0.5 μL</td>
 
    </tr>
 
    <tr>
 
        <td>Nuclease Free Water</td>
 
        <td>to 20 μL</td>
 
        <td>to 50 μL</td>
 
    </tr> 
 
    </table>
 
            <p>        Usually 100 pg – 1 ng of template DNA is sufficient</p>
 
    <p> • Mix by pipetting up and down or flicking the reactions
 
    <p> • Put tubes in thermocycler (with a pre-heated lid) with following cycling conditions:</p>
 
    <table width="100%">
 
    <tr>
 
        <th>Step</th>
 
        <th>  </th>
 
        <th>Temperature</th>
 
        <th>Time</th>
 
    </tr>
 
    <tr>
 
        <td>Initial Denaturation</td>
 
        <td>  </td>
 
        <td>98°C</td>
 
        <td>30 seconds</td>
 
    </tr>
 
    <tr>
 
        <td>25 – 35 cycles</td>
 
        <td>Denaturation</td>
 
        <td>98°C</td>
 
        <td>5 - 10 seconds</td>
 
    </tr>
 
    <tr>
 
        <td>  </td>
 
        <td>Annealing</td>
 
        <td>45 – 72°C</td>
 
        <td>10 – 30 seconds</td>
 
    </tr>
 
    <tr>
 
        <td>  </td>
 
        <td>Extension</td>
 
        <td>72°C</td>
 
        <td>15 -30 seconds per kb</td>
 
    </tr>
 
    <tr>
 
        <td>Final Extension</td>
 
        <td>  </td>
 
        <td>72°C</td>
 
        <td>5 -10 minutes</td>
 
    </tr>
 
    <tr>
 
        <td>Hold</td>
 
        <td>  </td>
 
        <td>4°C </td>
 
        <td>  </td>
 
    </tr> 
 
    </table>
 
<h2>Guidelines</h2>
 
    <p>To be completed</p>
 
</div>
 
 
<!-- TAQ PCR -->
 
<div id="taqpcr" class="panel">
 
<h1>Taq PCR – based on NEB Taq PCR Protocol</h1>
 
<h2>Materials</h2>
 
    <p> • 10X Standard Taq Reaction Buffer</p>
 
    <p> • dNTPs</p>
 
    <p> • Forward and Reverse Primers</p>
 
    <p> • Template plasmid DNA</p>
 
    <p> • Taq DNA polymerase</p>
 
    <p> • Nuclease Free Water</p>
 
<h2>Procedure</h2>
 
    <p> • Prepare following reaction in 0.5 mL PCR tubes on ice, adding polymerase last:</p>
 
    <table width="100%">
 
    <tr>
 
        <th>Component</th>
 
        <th>25 μL reaction</th>
 
        <th>50 μL reaction</th>
 
    </tr>
 
    <tr>
 
        <td>10X Standard Taq Reaction Buffer</td>
 
        <td>2.5 μL</td>
 
        <td>5 μL</td>
 
    </tr>
 
    <tr>
 
        <td>10 mM dNTPs</td>
 
        <td>0.5 μL</td>
 
        <td>1 μL</td>
 
    </tr>
 
    <tr>
 
        <td>10 mM Forward Primer</td>
 
        <td>0.5 μL</td>
 
        <td>1 μL</td>
 
    </tr>
 
    <tr>
 
        <td>10 mM Reverse Primer</td>
 
        <td>0.5 μL</td>
 
        <td>1 μL</td>
 
    </tr>
 
    <tr>
 
        <td>Template plasmid DNA</td>
 
        <td>1 pg – 1 ng</td>
 
        <td>1 pg – 1 ng</td>
 
    </tr>
 
    <tr>
 
        <td>Taq DNA Polymerase</td>
 
        <td>0.125 μL</td>
 
        <td>0.25 μL</td>
 
    </tr>
 
    <tr>
 
        <td>Nuclease Free Water</td>
 
        <td>to 25 μL</td>
 
        <td>to 50 μL</td>
 
    </tr> 
 
    </table>
 
            <p>        Usually 100 pg – 1 ng of template DNA is sufficient</p>
 
    <p> • Mix by pipetting up and down or flicking the reactions
 
    <p> • Put tubes in thermocycler (with a pre-heated lid) with following cycling conditions:</p>
 
    <table width="100%">
 
    <tr>
 
        <th>Step</th>
 
        <th>  </th>
 
        <th>Temperature</th>
 
        <th>Time</th>
 
    </tr>
 
    <tr>
 
        <td>Initial Denaturation</td>
 
        <td>  </td>
 
        <td>95°C</td>
 
        <td>30 seconds</td>
 
    </tr>
 
    <tr>
 
        <td>25 – 35 cycles</td>
 
        <td>Denaturation</td>
 
        <td>95°C</td>
 
        <td>15 – 30 seconds</td>
 
    </tr>
 
    <tr>
 
        <td>  </td>
 
        <td>Annealing</td>
 
        <td>45 – 68°C</td>
 
        <td>15 – 60 seconds</td>
 
    </tr>
 
    <tr>
 
        <td>  </td>
 
        <td>Extension</td>
 
        <td>68°C</td>
 
        <td>1 minutes per kb</td>
 
    </tr>
 
    <tr>
 
        <td>Final Extension</td>
 
        <td>  </td>
 
        <td>68°C</td>
 
        <td>5 minutes</td>
 
    </tr>
 
    <tr>
 
        <td>Hold</td>
 
        <td>  </td>
 
        <td>4°C </td>
 
        <td>  </td>
 
    </tr> 
 
    </table>
 
<h2>Guidelines</h2>
 
    <p>To be completed</p>
 
</div>
 
 
<!-- PCR PURIFICATION -->
 
<div id="pcrpurification" class="panel">       
 
<h1>PCR Product Purification - with QIAquick PCR Purification Kit (QIAGEN)</h1>
 
<h2>Materials</h2>
 
    <p> • PCR products</p>
 
    <p> • QIAquick PCR Purification Kit</p>
 
<h2>Procedure</h2>
 
    <p> • Add 5 volumes PB buffer to 1 volume of PCR product and mix</p>
 
    <p> • Place QIAquick column in 2 ml collection tube</p>
 
    <p> • Apply samples to QIAquick column and centrifuge for 30 – 60 seconds, discard flow-through</p>
 
    <p> • Wash by adding 0.75 μL PE buffer to QIAquick column and centrifuge fo 30 – 60 seconds, discard flow-through</p>
 
    <p> • Centrifuge QIAquick column for 1 minutes to remove residual wash buffer</p>
 
    <p> • Elute DNA by adding 30 or 50 μL EB buffer or water to the center of the QIAquick column. Let stand for 1 minutes and centrifuge for 1 minute</p>
 
</div>
 
 
<!-- PEG LIAC SOLUTION -->
 
<div id="pegliac" class="panel">       
 
<h1>PEG/LiAc Solution</h1>
 
<h2>Materials</h2>
 
    <p> • 50% PEG  (Polyethylene glycol) prepared with sterile deionized water</p>
 
    <p> • 10X TE buffer: 0.1 M Tris-Hcl, 10 mM EDTA, ph 7.5, autoclaved</p>
 
    <p> • 10X LiAc: 1 M lithium acetate, pH 7.5 adjusted with dilute acetic acid, autoclaved</p>
 
<h2>Procedure</h2>
 
    <p> • Prepare PEG/LiAc solution as follows:</p>
 
    <table width="100%">
 
    <tr>
 
        <th>Stock concentration</th>
 
        <th>Final concentration</th>
 
        <th>Total quantity for 10 mL solution</th>
 
    </tr>
 
    <tr>
 
        <td>50% PEG</td>
 
        <td>40% PEG</td>
 
        <td>8 mL</td>
 
    </tr>
 
    <tr>
 
        <td>10X TE buffer</td>
 
        <td>1X TE buffer</td>
 
        <td>1 mL</td>
 
    </tr>
 
    <tr>
 
        <td>10X LiAc</td>
 
        <td>1X LiAc</td>
 
        <td>1 mL</td>
 
    </tr>
 
    </table>   
 
</div>
 
 
<!-- SD MEDIUM -->
 
<div id="sdmedium" class="panel">
 
<h1>Sd Medium<7h1>
 
<h2>Materials</h2>
 
  <p> • Amino Acid Powder</p>
 
  <p> • Yeast Nitrogen Base</p>
 
  <p> • Ammonium Sulphate</p>
 
  <p> • Adenine Sulphate</p>
 
  <p> • Water</p>
 
  <p> • NaOH</p>
 
  <p> • Agar</p>
 
  <p> • Glucose</p>
 
<h2>Procedure</h2>
 
  <p> • Place stirrer bar in 2 L Erlenmeyer</p>
 
  <p> • Add 2.6 g amino acid powder, 3.4 g yeast nitrogen base, 10 g ammonium sulphate, 1 g adenine sulphate and 950 mL water</p>
 
  <p> • Adjust pH to 5.9 by adding a few drops of 10 M NaOH</p>
 
  <p> • In an other Erlenmeyer, add 35 g agar and 900 mL water</p>
 
  <p> • Autoclave both bottles</p>
 
  <p> • Transfer the content of first bottle to the agar-containing bottle</p>
 
  <p> • Cool to 55°C</p>
 
  <p> • Add 100 ml 40% glucose and 16 ml of the required amino acids</p>
 
  <p> • Pour plates</p>
 
</div>
 
 
<!-- TRANSFORMATION -->
 
<div id="transformation" class="panel">
 
<h1>Transformation – based on NEB Transformation Protocol</h1>
 
<h2>Materials</h2>
 
  <p> • Competent cells</p>
 
  <p> • DNA</p>
 
  <p> • SOC medium (SOB + Glucose)</p>
 
  <p> • Petri dish with appropriate antibiotic resistance</p>
 
<h2>Procedure</h2>
 
  <p> • Thaw competent cells on ice</p>
 
  <p> • Add 2 μL DNA to the competent cells, mix by pipetting up and down or flicking the tube 4 -5 times</p>
 
  <p> • Place mixture on ice for 30 minutes</p>
 
  <p> • Heat shock at 42°C for 30 seconds</p>
 
  <p> • Transfer tubes to ice for 2 minutes</p>
 
  <p> • Add 950 μL room-temperature SOC media</p>
 
  <p> • Incubate at 37°C for 60 minutes with shaking</p>
 
  <p> • Spread 100 μL cells onto selection plates (warm plates to 37°C prior to this step for increased efficiency)</p>
 
  <p> • Incubate overnight at 37°C</p>
 
</div>
 
 
 
 
 
 
 
   
 
            </div>
 
        </div>
 
    </div>
 
 
 
     <div class="fourth-section">
 
     <div class="fourth-section">
 
         <div class="container">
 
         <div class="container">
Line 631: Line 170:
 
         </div>
 
         </div>
 
     </div>
 
     </div>
 
 
    <!-- FOOTER -->
 
 
     <footer class="footer-distributed">
 
     <footer class="footer-distributed">
  
Line 673: Line 209:
  
 
         </footer>
 
         </footer>
    <a href="#" class="go-top" ><i class="glyphicon glyphicon-arrow-up"></i></a>
 
  
 
     <script src="https://2015.igem.org/Team:EPF_Lausanne/Test/js/jquery?action=raw&amp;ctype=text/js"></script>
 
     <script src="https://2015.igem.org/Team:EPF_Lausanne/Test/js/jquery?action=raw&amp;ctype=text/js"></script>
 
     <script src="https://2015.igem.org/Team:EPF_Lausanne/Test/js/bootstrap?action=raw&amp;ctype=text/js"></script>
 
     <script src="https://2015.igem.org/Team:EPF_Lausanne/Test/js/bootstrap?action=raw&amp;ctype=text/js"></script>
 
     <script src="https://2015.igem.org/Team:EPF_Lausanne/Test/js/plugins?action=raw&amp;ctype=text/js"></script>
 
     <script src="https://2015.igem.org/Team:EPF_Lausanne/Test/js/plugins?action=raw&amp;ctype=text/js"></script>
     <script src="https://2015.igem.org/Team:EPF_Lausanne/Test/js/main?action=raw&amp;ctype=text/js"></script>
+
     <script src="https://2015.igem.org/Team:EPF_Lausanne/Test/js/main?action=raw&amp;ctype=text/js"></script>  
     <script type="https://2015.igem.org/Team:EPF_Lausanne/js/Sidebarscript?action=raw&amp;ctype=text/js"></script> 
+
      
 
+
    <script src="https://2014.igem.org/Template:JS/EPFL_jquery?action=raw&amp;ctype=text/javascript"></script>
+
    <script src="https://2014.igem.org/Template:JS/EPFL_bootstrap?action=raw&amp;ctype=text/javascript"></script>
+
    <script src="https://2014.igem.org/Template:JS/EPFL_scrollto?action=raw&amp;ctype=text/javascript"></script>
+
    <script src="https://2014.igem.org/Template:JS/EPFL_easing?action=raw&amp;ctype=text/javascript"></script>
+
    <script src="https://2014.igem.org/Template:JS/EPFL_konami?action=raw&amp;ctype=text/javascript"></script>
+
    <script src="https://2014.igem.org/Template:JS/EPFL_default?action=raw&amp;ctype=text/javascript"></script>
+
 
+
 
</body>
 
</body>
 
</html>
 
</html>

Revision as of 13:36, 23 July 2015

Biologic Orthogonal GRNA-Implemented Circuit

This summer, the EPFL iGEM team strives to pave the way for simpler implementation of digital circuits in vivo. Using the newly discovered dCas9 as a synthetic transcription factor, we aim to design biocompatible transistor-like elements. Our ultimate goal is to make cells smarters by assembling these transistors into logic gates that are both chainable and parallelizable in a homogenous logic framework.

Thinking Binary

Boolean Logic is the bedrock of the digital revolution. Developed by George Boole in the mid-19th century, it is based on a simple set of values: 0 (“FALSE”) or 1 (“TRUE”). Modern computers represent all forms of information using strings of the same 0s and 1s (also named “Bits”). The processing of bits is handled by logical transistors - which can be seen as electronically controllable switches. Elementary logic operation are performed using cleverly assembled transistors. Such assemblies are named “logic gates”. Gates are the bricks with which complex behaviour is produced.

Biological computers

Since the early 2000’s, multiple synthetic biological gates have been built, revolutionizing our ability to dictate the way organisms react to stimuli. Their applications range from intelligent biosensors to cellular therapeutics with improved in vivo targeting and curing.
Unfortunately, the development of programmable cells has been hampered by difficulties in the multiplication and chaining of logic elements. This has hindered the complexification of bio-circuits as well as the automation and flexibility of their design.
To overcome these limitations, an ideal in vivo logic element should be modular, reusable, and orthogonal - i.e avoiding unwanted cross-talk with its host organism as well as other elements of the engineered circuit.

Cas9 Logic Gates

Cas9 (CRISPR associated protein 9) is an RNA-guided DNA endonuclease that targets and cleaves any DNA sequence complementary to its guide RNA (gRNA). Our project will be based upon a derivative of this technology : catalytically “dead” Cas9 (dCas9) that lack the ability to cleave DNA. When fused to a RNA polymerase (RNAP) recruiting element (e.g. the omega subunit of RNAP in E. Coli or VP64 in eukaryotes), chimeric dCas9 can act as a programmable transcription activator. In addition, activating dCas9 may also act as a DNA transcription inhibitor: depending on its gRNA-determined binding site, it has been shown in yeasts to sterically hinder RNAP recruitment to promoter sequences.
Exploiting dCas9-omega/VP64’s ambivalence, we propose the creation of gRNA-controlled switch-like elements analogous to transistors. The state of the switch would be solely dependent on the position of dCas9 relative to the promoter. The content of the gRNA-targeted sequences might therefore be designed such that each transistor is orthogonal to other logic elements. Using gRNA to make what could be seen as “biological wires”, we also hope to achieve chainability of the transistors and thus complexification of bio-circuits.

Still under construction