Difference between revisions of "Team:WPI-Worcester/Entrepreneurship"

Line 1: Line 1:
 
+
<!DOCTYPE html>
 
+
 
+
 
+
 
<html>
 
<html>
 +
<!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7" lang="en"> <![endif]-->
 +
<!--[if IE 7]>    <html class="no-js lt-ie9 lt-ie8" lang="en"> <![endif]-->
 +
<!--[if IE 8]>    <html class="no-js lt-ie9" lang="en"> <![endif]-->
 +
<!--[if gt IE 8]><!--> <html class="no-js" lang="en"> <!--<![endif]-->
 
<head>
 
<head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
+
<style>
    <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
+
#contentSub, #footer-box, #catlinks, #search-controls, #p-logo, .printfooter, .firstHeading, .visualClear{display: none;}
    <meta name="description" content="iGEM 2014 IIT Delhi">
+
#globalWrapper, #content { /*-- changes default wiki settings --*/
    <meta name="keywords" content="igem iitdelhi 2014, biotech, biobricks, parts, notebook, bio, chem, iit, delhi, hauz khas , new delhi, molecular biology,  genetics, synthetic, biology, competition, iGEM, MIT, USA, abhishek, bharti">
+
width: 100%;
    <meta name="viewport" content="width=device-width, initial-scale=1">
+
height: 100%;
    <meta http-equiv="cache-control" content="public" />   
+
border: 0px;
<title>iGEM IIT Delhi 2014</title>
+
background-color: transparent;
<link rel='shortcut icon' id='favicon' href='https://static.igem.org/mediawiki/2014/7/76/Favicon3.png' />
+
margin: 0px;
<link href='http://fonts.googleapis.com/css?family=Open+Sans' rel='stylesheet' type='text/css'>
+
padding: 0px;
<link href='http://fonts.googleapis.com/css?family=Droid+Serif:400italic' rel='stylesheet' type='text/css'>
+
}
<link href='http://fonts.googleapis.com/css?family=Roboto+Condensed:400,300,700' rel='stylesheet' type='text/css'>
+
  
 +
html, body, .wrapper { /*-- changes default wiki settings --*/
 +
width: 100%;
 +
height: 100%;
 +
background-color: transparent;
 +
}
 +
#top-section {
 +
    background-color:#484848;
 +
    border: 0 none;
 +
    width: 100%;
 +
    height: 24px;
 +
    z-index: 100;
 +
    top: 0;
 +
    position: fixed;
 +
}
 +
#menubar {
 +
    top: 2px;
 +
    font-family: Helvetica, Arial, Sans-serif;
 +
    font-size: 14px;
 +
}
 +
.left-menu,.left-menu a {
 +
    color: white;
 +
    left: 0;
 +
    text-align: left;
 +
    text-transform: capitalize;
 +
}
 +
.right-menu,.right-menu a {
 +
    color: white;
 +
    right: 0;
 +
    text-align: right;
 +
}
 +
.right-menu:hover, .left-menu:hover {
 +
    background-color: transparent;
 +
}
 +
.right-menu:hover a {
 +
    color: white;
 +
}
 +
.right-menu li a, .left-menu li a {
 +
    background-color: transparent;
 +
    color: white;
 +
    padding:0,15px,0,0;
 +
    margin:0;
 +
}
 +
.right-menu li a:hover {
 +
    color: white;
 +
    text-decoration:underline;
 +
}
 +
.right-menu li a:visited {
 +
    color: white;
 +
}
 +
.new {
 +
    color:white;
 +
}
 +
a, a:visited {
 +
    color: white;
 +
    text-decoration: none;
 +
}
 +
a:hover {
 +
    color: white;
 +
    text-decoration: underline;
 +
}
 +
</style>
 +
<meta charset="utf-8" />
 +
<meta name="viewport" content="width=device-width" />
 +
<title>2014HZAU-China</title>
  
 +
<!-- ////////////////////////////////// -->
 +
<!-- //      Stylesheets Files      // -->
 +
<!-- ////////////////////////////////// -->
 +
<link rel="stylesheet" href="https://2014.igem.org/Team:HZAU-China/base.css?action=raw&ctype=text/css" type="text/css" />
 +
<link rel="stylesheet" href="https://2014.igem.org/Team:HZAU-China/framework.css?action=raw&ctype=text/css" type="text/css" />
 +
<link rel="stylesheet" href="https://2014.igem.org/Team:HZAU-China/style.css?action=raw&ctype=text/css" type="text/css" />
 +
<link rel="stylesheet" href="https://2014.igem.org/Team:HZAU-China/noscript.css?action=raw&ctype=text/css" type="text/css" media="screen,all" id="noscript"/>
  
  
<link href='http://fonts.googleapis.com/css?family=Open+Sans:300,400,700' rel='stylesheet' type='text/css'>
+
 
<!--map=====================
+
<!-- ////////////////////////////////// -->
<!--Script for google map at footer-->
+
<!-- //    Google Webfont Files    // -->
<script
+
<!-- ////////////////////////////////// -->
src="http://maps.googleapis.com/maps/api/js?key=AIzaSyDY0kkJiTPVd2U7aTOAwhc9ySH6oHxOIYM&sensor=false">
+
</script>
+
  
<script>
 
function initialize()
 
{
 
var mapProp = {
 
  center:new google.maps.LatLng(28.5450,77.1922),
 
  zoom:5,
 
  mapTypeId:google.maps.MapTypeId.ROADMAP
 
  };
 
var map=new google.maps.Map(document.getElementById("googleMap"),mapProp);
 
}
 
 
google.maps.event.addDomListener(window, 'load', initialize);
 
</script>
 
  
 +
<!-- ////////////////////////////////// -->
 +
<!-- //        Favicon Files        // -->
 +
<!-- ////////////////////////////////// -->
 +
<link rel="shortcut icon" href="images/favicon.ico" />
  
  
<!-------------EDITS ON------------------------>
+
<!-- //      Javascript Files        // -->
  
 +
<script src="https://2014.igem.org/Team:HZAU-China/jquery.min.js?action=raw&ctype=text/javascript"></script>
 +
<script src="https://2014.igem.org/Team:HZAU-China/jquery.easing-1.3.min.js?action=raw&ctype=text/javascript"></script>
 +
<script src="https://2014.igem.org/Team:HZAU-China/tooltip.js?action=raw&ctype=text/javascript" ></script>
 +
<script src="https://2014.igem.org/Team:HZAU-China/dropdown.js?action=raw&ctype=text/javascript" ></script>
 +
<script src="https://2014.igem.org/Team:HZAU-China/tinynav.min.js?action=raw&ctype=text/javascript" ></script>
 +
<script src="https://2014.igem.org/Team:HZAU-China/camera.min.js?action=raw&ctype=text/javascript" ></script>
 +
<script src="https://2014.igem.org/Team:HZAU-China/jquery.fancybox.js?action=raw&ctype=text/javascript"></script>
 +
<script src="https://2014.igem.org/Team:HZAU-China/jquery.fancybox-media.js?action=raw&ctype=text/javascript" ></script>
 +
<script src="https://2014.igem.org/Team:HZAU-China/jquery.ui.totop.min.js?action=raw&ctype=text/javascript" ></script>
 +
<script src="https://2014.igem.org/Team:HZAU-China/ddaccordion.js?action=raw&ctype=text/javascript" ></script>
 +
<script src="https://2014.igem.org/Team:HZAU-China/jquery.twitter.js?action=raw&ctype=text/javascript" ></script>
 +
<script src="https://2014.igem.org/Team:HZAU-China/jflickrfeed.min.js?action=raw&ctype=text/javascript"></script>
 +
<script src="https://2014.igem.org/Team:HZAU-China/faq-functions.js?action=raw&ctype=text/javascript" ></script>
 +
<script src="https://2014.igem.org/Team:HZAU-China/theme-functions.js?action=raw&ctype=text/javascript" ></script>
  
<style>
+
<script>
.dock-container {
+
$(document).ready(function() {  
position: relative;
+
    //Camera Jquery
top: 10px; height: 50px; padding-left: 20px; }
+
    $('#camera-slide').camera({
a.dock-item {
+
        thumbnails: false,
display: block;
+
         hover: false,
width: 50px; position: absolute;
+
        pagination: false,
bottom: 0; text-align: center;
+
    });  
text-decoration: none; color: #333; }
+
});
.dock-item span { display: none; padding-left: 20px; }
+
.dock-item img {
+
border: 0;
+
margin: 5px 10px 0px;
+
width: 100%;
+
}
+
 
+
</style>
+
 
+
 
+
<!--------------EDITS OFF------------------------>
+
 
+
 
+
<script src="http://ie7-js.googlecode.com/svn/version/2.1(beta4)/IE9.js"></script>
+
 
+
<!-- Remove all empty <p> tags -->
+
<script type="text/javascript">
+
    $(document).ready(function() {
+
        $("p").filter( function() {
+
            return $.trim($(this).html()) == '';
+
         }).remove()
+
    });
+
 
</script>
 
</script>
  
</head>
 
  
 +
<!-- IE Fix for HTML5 Tags -->
 +
<!--[if lt IE 9]><script src="http://html5shiv.googlecode.com/svn/trunk/html5.js"></script>
 +
<![endif]-->
 +
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" /></head>
 
<body>
 
<body>
 +
<!-- header start here -->
 +
<header>
 +
    <div id="main-wrapper">
 +
        <!-- logo start here -->
 +
        <div id="logo-left">
 +
            <a href="https://igem.org/Team.cgi?year=2014&team_name=HZAU-China"><img src="https://static.igem.org/mediawiki/2014/4/4c/Hzau-home-lllogo.png" alt="HZAU-China" /></a>
 +
        </div>
 +
        <!-- logo end here -->
 +
 +
<!-- igemlogo start here -->
 +
<div id="logo-right">
 +
            <a href="https://2014.igem.org/Main_Page"><img src="https://static.igem.org/mediawiki/2014/c/ce/Hzauigemlogo.png" alt="iGEM" /></a>
 +
        </div>
 +
        <!-- igemlogo end here -->
 +
 +
        <!-- mainmenu start here -->
 +
        <nav id="mainmenu">
 +
            <ul id="menu">
 +
                <li class="dropdown"><a href="https://2014.igem.org/Team:HZAU-China">home</a></li>
 +
                <li class="selected dropdown"><a href="https://2014.igem.org/Team:HZAU-China/Project">Project</a>
 +
    <ul>                       
 +
<li><a href="https://2014.igem.org/Team:HZAU-China/Design"><span>-</span>Overview</a></li>
 +
                        <li><a href="https://2014.igem.org/Team:HZAU-China/Background"><span>-</span>Background</a></li>
 +
<li><a href="https://2014.igem.org/Team:HZAU-China/Input"><span>-</span>Input module</a></li>
 +
<li><a href="https://2014.igem.org/Team:HZAU-China/Processing"><span>-</span>Processing module</a></li>
 +
<li><a href="https://2014.igem.org/Team:HZAU-China/Output"><span>-</span>Output module</a></li>
 +
<li><a href="https://2014.igem.org/Team:HZAU-China/Application"><span>-</span>Application</a></li>
 +
                    </ul>
 +
</li>
 +
<li class="dropdown"><a href="https://2014.igem.org/Team:HZAU-China/Review">Wetlab</a>
 +
                    <ul>
 +
                        <li><a href="https://2014.igem.org/Team:HZAU-China/Overview"><span>-</span>Overview</a></li>
 +
<li><a href="https://2014.igem.org/Team:HZAU-China/Construction"><span>-</span>Construction</a></li>
 +
<li><a href="https://2014.igem.org/Team:HZAU-China/Characterization"><span>-</span>Characterization</a></li>
 +
                        <li><a href="https://2014.igem.org/Team:HZAU-China/Help"><span>-</span>Help each other</a></li>
 +
                        <li><a href="https://2014.igem.org/Team:HZAU-China/Protocol"><span>-</span>Protocol</a></li>
 +
                        <li><a href="https://2014.igem.org/Team:HZAU-China/Labnotes"><span>-</span>Labnotes</a></li>   
 +
                    </ul>
 +
                </li>
 +
                <li class="dropdown"><a href="https://2014.igem.org/Team:HZAU-China/Modeling">Modeling</a>
 +
                    <ul>
 +
                        <li><a href="https://2014.igem.org/Team:HZAU-China/MOverview"><span>-</span>Overview</a></li>
 +
                        <li><a href="https://2014.igem.org/Team:HZAU-China/Biological"><span>-</span>Biological processes</a></li>
 +
                        <li><a href="https://2014.igem.org/Team:HZAU-China/Comparison"><span>-</span>Comparison between different designs</a></li>
 +
<li><a href="https://2014.igem.org/Team:HZAU-China/Analysis"><span>-</span>Simulation and sensitivity analysis</a></li>
 +
                        <li><a href="https://2014.igem.org/Team:HZAU-China/Circuit"><span>-</span>Design principle of rewirable circuit</a></li> 
 +
                    </ul>
 +
                </li>
 +
<li class="dropdown"><a href="https://2014.igem.org/Team:HZAU-China/Achievements">Achievements</a>
 +
    <ul>                       
 +
                        <li><a href="https://2014.igem.org/Team:HZAU-China/Achievements"><span>-</span>Judgement</a></li>
 +
<li><a href="https://2014.igem.org/Team:HZAU-China/Parts"><span>-</span>Parts</a></li>
 +
                    </ul>
 +
</li>
 +
                <li class="dropdown"><a href="https://2014.igem.org/Team:HZAU-China/Team">Team</a>
 +
    <ul>
 +
                        <li><a href="https://2014.igem.org/Team:HZAU-China/Team"><span>-</span>Members</a></li>
 +
<li><a href="https://2014.igem.org/Team:HZAU-China/Attributions"><span>-</span>Attributions</a></li>
 +
                        <li><a href="https://2014.igem.org/Team:HZAU-China/Gallery"><span>-</span>Gallery</a></li> 
 +
                        <li><a href="https://2014.igem.org/Team:HZAU-China/acknowledgment"><span>-</span>Acknowledgment</a></li>   
 +
                    </ul>
 +
</li>
 +
                <li class="dropdown"><a href="https://2014.igem.org/Team:HZAU-China/Outreach">Outreach</a>
 +
                    <ul>
 +
<li><a href="https://2014.igem.org/Team:HZAU-China/Collaboration"><span>-</span>Collaboration</a></li>
 +
                        <li><a href="https://2014.igem.org/Team:HZAU-China/Meetup"><span>-</span>Meetup</a></li>
 +
                        <li><a href="https://2014.igem.org/Team:HZAU-China/Humanities"><span>-</span>Humanities</a></li>
 +
                        <li><a href="https://2014.igem.org/Team:HZAU-China/Economics"><span>-</span>Social Sciences</a></li>
 +
                        <li><a href="https://2014.igem.org/Team:HZAU-China/Pubic outreach"><span>-</span>Public outreach</a></li>
 +
                        <li><a href="https://2014.igem.org/Team:HZAU-China/Safety"><span>-</span>Safety</a></li>
 +
                        <li><a href="https://2014.igem.org/Team:HZAU-China/Social media"><span>-</span>Social media</a></li> 
 +
                        <li><a href="https://2014.igem.org/Team:HZAU-China/Other"><span>-</span>Other dream</a></li>
 +
                    </ul>
 +
                </li>
 +
            </ul>
 +
        </nav>
 +
        <!-- mainmenu end here -->     
 +
    </div>
 +
</header>
 +
<!-- header end here -->
  
 +
<!-- pagetitle start here -->
 +
<section id="pagetitle-wrapper">
 +
    <div class="pagetitle-content">   
 +
    <h2>Project</h2> 
 +
    </div>
 +
</section>
 +
<!-- pagetitle end here -->
  
<div id="fb-root"></div>
+
<!-- breadcrumb start here -->
<script>(function(d, s, id) {
+
<section id="breadcrumb-wrapper">
  var js, fjs = d.getElementsByTagName(s)[0];
+
     <div id="breadcrumb-content">
  if (d.getElementById(id)) return;
+
  js = d.createElement(s); js.id = id;
+
  js.src = "//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";
+
  fjs.parentNode.insertBefore(js, fjs);
+
}(document, 'script', 'facebook-jssdk'));</script>
+
 
+
 
+
 
+
<div class="container_home">
+
 
+
 
+
<!--Header============================================-->
+
<div class="topblack"></div>
+
<div class="topwhite">
+
<!--<div class="logo"><a href="https://2014.igem.org/Team:IIT_Delhi"><img src="https://static.igem.org/mediawiki/2014/c/c0/Igem_iitdelhi_logo2.gif"/></a></div>-->
+
 
+
 
+
<div class="logo"><a href="https://2014.igem.org/Team:IIT_Delhi"><img src="https://static.igem.org/mediawiki/2014/b/b4/Logo_igem_iitdelhi.png"/></a>
+
</div>
+
 
+
<div class="logotext"><img src="https://static.igem.org/mediawiki/2014/7/71/Text_iitd.jpg"/></div>
+
 
+
 
+
<div class="igemlogo"><a href="https://igem.org/Main_Page" target="_blank"><img src="https://static.igem.org/mediawiki/2014/e/e2/Igemlogo.png"/></a></div>
+
 
+
 
+
<!-----EDIT GOING ON============-------->
+
 
+
<script type="text/javascript" src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js"></script>
+
<script type="text/javascript" src="./javascripts/fisheye-iutil.min.js"></script>
+
 
+
<script>
+
$(function () {
+
     // Dock initialize
+
    $('#dock').Fisheye(
+
{
+
            maxWidth: 30,
+
            items: 'a',
+
            itemsText: 'span',
+
            container: '.dock-container',
+
            itemWidth: 50,
+
            proximity: 60,
+
            alignment : 'left',
+
            valign: 'bottom',
+
            halign : 'center'
+
}
+
);
+
});
+
</script>
+
<div id="dock">
+
    <div class="dock-container">
+
        <a class="dock-item" href="index1.html"><span>Example 1</span><img src="./images/home.png" alt="home" /></a>
+
        <a class="dock-item" href="index1.html"><span>Example 2</span><img src="./images/contact.png" alt="contact" /></a>
+
        <a class="dock-item" href="index1.html"><span>Example 3</span><img src="./images/education.png" alt="portfolio" /></a>
+
        <a class="dock-item" href="index1.html"><span>Example 1</span><img src="./images/home.png" alt="home" /></a>
+
        <a class="dock-item" href="index1.html"><span>Example 2</span><img src="./images/contact.png" alt="contact" /></a>
+
        <a class="dock-item" href="index1.html"><span>Example 3</span><img src="./images/education.png" alt="portfolio" /></a> 
+
    </div><!-- end div .dock-container -->
+
</div><!-- end div .dock #dock -->
+
 
+
 
+
<!-----EDITS ABOVE==========================--->
+
 
+
 
+
 
+
<!-- Navigation bar-->
+
  <div id="nav">
+
  <div id="nav_wrapper">
+
 
         <ul>
 
         <ul>
            <li class="nav_item_home" class="home"><a href="https://2014.igem.org/Team:IIT_Delhi">Home</a></li><li class="project">
+
        <li><a href="https://2014.igem.org/Team:HZAU-China">Home</a></li>
             <a href="https://2014.igem.org/Team:IIT_Delhi/Project">Project</a></li><li class="modeling">
+
             <li>Project</li>
            <a href="https://2014.igem.org/Team:IIT_Delhi/Modeling">Modeling</a></li><li class="team">
+
 
            <a href="https://2014.igem.org/Team:IIT_Delhi/Team">Team</a></li><li class="notebook">
+
            <a href="https://2014.igem.org/Team:IIT_Delhi/Notebook">Notebook</a></li><li class="attributions">
+
            <a href="https://2014.igem.org/Team:IIT_Delhi/Attributions">Attributions</a></li><li class="safety">
+
            <a href="https://2014.igem.org/Team:IIT_Delhi/Safety">Safety</a></li><li class="parts">
+
            <a href="https://2014.igem.org/Team:IIT_Delhi/Parts">Parts</a></li><li class="achievements">
+
            <a href="https://2014.igem.org/Team:IIT_Delhi/Achievements">Achievements</a></li>
+
 
+
 
         </ul>
 
         </ul>
 
     </div>
 
     </div>
  </div>
+
</section>
 +
<!-- breadcrumb end here -->
  
 +
<!-- maincontent start here -->
 +
<section id="content-wrapper"> 
 +
    <div class="row">
 +
        <div class="eleven columns">
 +
        <div class="offset-by-one columns">
 +
<h3 style="text-align:center">1. Overview</h3> 
 +
<p class="highlighttext">
 +
Cells sense the environment, process information, and make response to stimuli. To make cells work well in complex natural environments, lots of processes have to be preset to react to various signals. However, when well-characterized modules are combined to construct higher order systems, unpredictable behaviors often occur because of the interplay between modules. Another significant problem is that complex integrated systems composed of numerous parts may cause cell overload.</p>
 +
<p class="highlighttext">
 +
We proposed an elegant method to design higher order systems. Instead of merely combining different functional modules, we constructed one integrated processing module with fewer parts by utilizing the common structures between modules. The circuit we designed is a rewirable one and the topological structure of the processing module can be altered to <span style="font-weight:bold;">adapt</span> to environmental change. The basic idea is to rewire the connections between parts and devices to <span style="font-weight:bold;">implement multiple functions</span> with the help of the site-specific recombination systems.</p>
 +
<p class="highlighttext">
 +
Based on the design principle we put forward, we built two circuits to verify our idea. Each circuit has three modules including an input module, a processing module, and an output module. The input module receives environmental signal and triggers the rewiring of the processing module. The output module monitors real-time processes using fluorescence intensity.</p>
 +
<p class="highlighttext">
 +
Our design approach may lead to a revolutionary step towards <span style="font-weight:bold;">system integration</span> in synthetic biology. Potential fields of application include organism development, living therapeutics and environment improvement.</p>
 +
            <div class="clear"></div>
 +
            <div class="divider"></div>
  
<!--Follow us link===============-->
+
<h3 style="text-align:center">2. Background</h3>            
<div class="links">
+
              <p class="highlighttext">Since its inception more than a decade ago, synthetic biology has undergone considerable development and has attained significant achievements with the help of the engineering slant. However, there are still obstacles to build a cell. Engineers try to abstract the DNA sequences into some standard functional parts and assemble them using some principles in electrical engineering. So far, the limited understanding of biological system prevents us to combine parts and modules to create larger scale systems. The complexity of synthetic systems didn’t increase rapidly as the Moore’s law (Purnick and Weiss, 2009). </p>
<p class="followus">Follow Us</p>
+
               <h5>Challenges</h5>
<div class="link_bg">
+
              <p class="highlighttext">There are some common problems that make the circuits we designed not work as our expected. Many failure modes have been collated by Brophy and Voigy in their review (Brophy and Voigt, 2014). In our project, we mainly focus on two modes, <span style="font-weight:bold;">crosstalk and host overload</span>, that emerge especially when we create more sophisticated systems. More specifically, regulators may interact with each other’s targets leading to errors in the desired operation, and the synthetic circuits may compete with natural parts that maintain the normal cellular processes for limited resources.</p>
            <table border="0" cellspacing="2">
+
              <tr>
+
                <td>
+
                <a href="https://www.facebook.com/igemiitdelhi" target="_blank"><img src="https://static.igem.org/mediawiki/2014/5/51/Fb.png" alt="facebook"  title="Facebook"  onmouseover="this.src='https://static.igem.org/mediawiki/2014/6/6c/Fbhover.png';"
+
            onmouseout="this.src='https://static.igem.org/mediawiki/2014/5/51/Fb.png';" /> </a>              </td>
+
                
+
                <td >
+
                <a href="https://twitter.com/iGEM_IIT_Delhi" target="_blank" >
+
                <img src="https://static.igem.org/mediawiki/2014/f/f7/Twitter.png" alt="twitter" title="Twitter" onmouseover="this.src='https://static.igem.org/mediawiki/2014/5/56/Twitterhover.png';"
+
            onmouseout="this.src='https://static.igem.org/mediawiki/2014/f/f7/Twitter.png';"/></a>               </td>
+
             
+
                <td>
+
                <a href="https://www.youtube.com/channel/UCBHF9Lel4MF2dien-p3o10A" target="_blank" >
+
                <img src="https://static.igem.org/mediawiki/2014/a/af/Youtube.png" alt="you tube" title="Youtube" onmouseover="this.src='https://static.igem.org/mediawiki/2014/9/91/Youtubehover.png';"
+
            onmouseout="this.src='https://static.igem.org/mediawiki/2014/a/af/Youtube.png';"/></a>                </td>
+
              </tr>
+
             
+
            </table>
+
        </div>
+
  
 +
              <h5>Solution</h5>
 +
              <p class="highlighttext">We designed a time-sharing system that can process information according to the input signal. Cells rewire its synthetic circuit to <span style="font-weight:bold;">alter the topological structure of regulatory pathway</span> when they receive the corresponding stimuli. In this way, we <span style="font-weight:bold;">reuse the existing synthetic module</span> rather than add a new one to implement another function, which reduces the resource cost in running unnecessary function and prevents the interplay between parallel modules. After overcoming these two big problems, our engineered cells are more <span style="font-weight:bold;">versatile</span> and <span style="font-weight:bold;">flexible</span> in information processing. </p>
 +
            <div class="clear"></div>
 +
            <div class="divider"></div>
  
</div>
 
</div>
 
  
  
 +
<h3 style="text-align:center">3. Input Module</h3> 
 +
              <p class="highlighttext">The input module is in charge of the expression of recombinase according to the received signals. When there’s no input signal, there is leaky expression. Such leakage may unexpectedly alter the function of the processing module. So we need <span style="font-weight:bold;">tighter regulation</span>. We cloned the recombinase under the control of the inducible riboregulators (Callura <span style="font-style:italic;">et al.</span>, 2012; Bonnet <span style="font-style:italic;">et al.</span>, 2013). </p>
 +
              <h5>Site-specific recombination</h5>
 +
              <p class="highlighttext">The site-specific recombination system we used in our project is Cre recombinase meditated inversion system. We chose two mutant loxP sites, lox66 and lox71, instead of the wild-type loxP sites. After the first Cre-mediated recombination, one wild-type loxP site and one double mutant loxP site are generated. The double mutant loxP site, lox72, exhibits a very low affinity to Cre recombinase. So it can be regarded as a unidirectional one, or an irreversible one.</p>
 +
<img src="https://static.igem.org/mediawiki/2014/3/31/Hzau-project-1.png"  width="300px" class="img-center"/>
  
<!--=========Incredible India=========-->
+
              <h5>Riboregulator</h5>
<div class="incredibleIndia"></div>
+
              <p class="highlighttext">In a riboregulator, the cis-repressed RNA is like a lock, and the trans-activating RNA is like a key. When they reach a certain concentration, the trans-activating RNA is designed to target and hybridize to the stem-loop of the crRNA message. The resulting RNA duplex causes a conformational change in the crRNA that unfolds the stem-loop, exposing the RBS and permitting translation. In this way we can achieve a post-transcriptional control.</p>
<div class="incredibleIndiaheader"><img class="mainheader" src="https://static.igem.org/mediawiki/2014/a/a7/Headerincredibleindia2.png"/><img class="centerlogo" src="https://static.igem.org/mediawiki/2014/2/22/Igem_iitdelhi_logo128PX.gif"/></div>
+
<img src="https://static.igem.org/mediawiki/2014/5/54/Hzau-project-2.png" width="700px" class="img-center"/>
<div class="fadedbackground"><img src="https://static.igem.org/mediawiki/2014/6/6e/Scribblebg_iitd.png"/></div>
+
<div class="redpatternedbg"><img src="https://static.igem.org/mediawiki/2014/1/11/Redpattern_iitd.png"/></div>
+
  
<div class="textbg_iitd"><img src="https://static.igem.org/mediawiki/2014/c/ce/Textbg_iitd.png"/>
+
              <h5>Coherent feedforward loop</h5>
<div class="aboutus"><h4>Our Aim:</h4><p>We aim to genetically engineer  bacteria and design a prototype of a device that converts harmful components of exhaust gases (i.e NOx and SOx) coming out of  chimneys of various industries and car exhausts into harmless byproducts. NOx and SOx are well known pollutants responsible for various respiratory disorders in humans such as asthma, bronchitis etc. They help in formation of Ozone in the lower troposphere where it acts as an irritant of the skin, eyes and lungs. On the other hand, oxides of Sulfur are the main culprits behind acid rain which corrodes buildings, destroys crops and acidifies water bodies, killing aquatic life.<br><br>
+
              <p class="highlighttext">We incorporated a coherent feedforward loop into our input module. This motif can provide pulse filtration in which short pulses of signal will not generate a response but persistent signals will generate a response after short delay. So we utilized this property to filter noise.</p>
 +
<img src="https://static.igem.org/mediawiki/2014/e/e2/Hzau-project-3.png"  width="500px" class="img-center"/>
 +
            <div class="clear"></div>
 +
            <div class="divider"></div>
  
We aim to genetically engineer E.coli and equip it with the genes to synthesize nitrite reductase enzyme NrfA and CysI (sulfite reductase) and Sqr (Sulfide Quinone reductase) enzymes. NrfA reduces NOx to ammonia (NH3) while Cys1 and Sqr reduce sulphur dioxide (SO2) to hydrogen sulfide (H2S) and H2S to sulfur(S) respectively. These would 
+
<h3 style="text-align:center">4. Processing Module</h3> 
be immobilized on polymer beads that have a positive zeta potential and placed in a bioreactor. The bacteria will reduce the oxides present in the incoming gas stream and consequently the percentage of oxides of nitrogen and sulfur in the outgoing gas stream will be significantly lower.<br><br>
+
<h5>Motivation</h5>
 +
              <p class="highlighttext">Many engineered cells that worked well in a laboratory environment didn’t work well in complex natural environments. Natural cell can adapt to the environment since they have a hierarchical regulatory network. So we want to integrate multiple processing functions in our engineered cells. Taking the limited resources in cells into account, we construct one integrated processing module with fewer parts by utilizing the common structures between modules, instead of merely combining different functional modules.</p>
  
Our proposed design promises easy and effective scalability. Depending on the site of installation (i.e.industrial chimney or in the exhaust of a vehicle), the volume of our  inputs can be altered to obtain the desired output. Moreover, the fact that all the sub-components of our model work independently of each other means that they can be easily detached and replaced, making the system very handy. Around 56% of the population in India is still involved in agricultural activities. If the production of NOx and SOx continues unabated like today, the damaging effects of acid rain on the crops will jeopardize the livelihoods of a large section of India’s population in the future. This will have serious economic and social repercussions. And if the concentration of NOx and SOx in the atmosphere keeps building up, it will adversely affect the health of the people, particularly those who cannot pay for their treatment. Also, since our model makes use of bacteria instead of metallic catalysts to reduce the gases, the potential toxicity that can arise from metal by-products of catalyst degradation can be successfully eliminated. Hence, looking at all the positive aspects of our proposed model, we believe that it will help to create a greener and a healthier future.</p></div>
+
<h5>How we design</h5>
 +
              <p class="highlighttext">We put forward a concept of <span style="font-weight:bold;">rewirable circuit</span>. The topological structure of regulatory pathway can be modified to adapt to environmental change. First, we constructed a transcription regulatory pathway by combining inducible promoters and corresponding regulators. Besides, we added some special sequences into the synthetic circuit. These sites can be recognized by recombinase protein and help to rearrange the parts connection by site-specific recombination. After the rearrangement, the circuit we designed is rewired to achieve another function.</p>
 +
<p class="highlighttext">We use two examples to demonstrate our idea, and we will describe the general steps about how to design rewirable circuits in <a href="https://2014.igem.org/Team:HZAU-China/Circuit
 +
">the modeling part</a>.</p>
 +
<p class="highlighttext">In design 1, the processing module is similar to the classic repressilator, which is composed of three NOT gates. cI represses tetR, which represses lacI, which represses cI. What's different is that the transcription directions of these three genes in our design are no longer the same as that in the classic repressilator. This is because we want to put two promoters more closely. And we add a pair of reversed lox sites on either side of the promoters (Fig. 1). </p>
 +
<img src="https://static.igem.org/mediawiki/2014/7/72/Hzau-project-4.png"  width="500px" class="img-center"/>
 +
<p class="figuretext">Figure 1. Circuit in design 1.</p>
  
</div>
+
<p class="highlighttext">After rewiring the circuit, the regulatory relationship among these three genes is altered. It is now that cI represses lacI. So cI and lacI inhibit each other. And the <span style="font-weight:bold;">repressilator</span> which is composed of three NOT gates is rewired to be a <span style="font-weight:bold;">toggle switch</span> composed of two NOT gates(Fig. 2).</p>
 +
<img src="https://static.igem.org/mediawiki/2014/1/1a/Hzau-project-6.png"  width="600px" class="img-center"/>
 +
<p class="figuretext">Figure 2. Abstract structure in design 1.</p>
  
<div class="flagview">
+
<p class="highlighttext">In design 2, the parts we used are from a quorum sensing system. When the signal molecule AHL binds to luxR proteins, it activates the luxpR promoter and represses the luxpL promoter. LuxI synthesizes more AHL and AiiA contributes to the degradation of AHL. We used luxpR promoter to express luxI and used luxpL promoter to express AiiA (Fig. 3). Then a direct <span style="font-weight:bold;">positive feedback loop</span> and an indirect positive feedback loop formed (Fig. 4). When the inversion happens, it’s now luxpR that will express AiiA and it's luxpL that will express luxI (Fig. 3). So now more AHL will repress its own production, and will activate its own degradation. And this is a <span style="font-weight:bold;">negative feedback loop</span> (Fig. 4).</p>
    <a href="http://info.flagcounter.com/AJ8u"><img src="http://s11.flagcounter.com/count/AJ8u/bg_373737/txt_FFFFFF/border_373737/columns_3/maxflags_10/viewers_0/labels_1/pageviews_1/flags_1/" alt="Free counters!" border="0">
+
<img src="https://static.igem.org/mediawiki/2014/c/c5/Hzau-project-7.png"  width="500px" class="img-center"/>
    </a>
+
<p class="figuretext">Figure 3. Circuit in design 2.</p>
</div>
+
<img src="https://static.igem.org/mediawiki/2014/5/57/Hzau-project-8.png" width="600px" class="img-center"/>
 +
<p class="figuretext">Figure 4. Abstract structure in design 2.</p>
  
<div class="videobackground">
+
            <div class="clear"></div>
<div class="animatedlogo"><img src="https://static.igem.org/mediawiki/2014/1/18/Igem_iitdelhi_logo_300px.gif"/></div>
+
            <div class="divider"></div>
  <img src="https://static.igem.org/mediawiki/2014/a/af/Videobg_iitd.png"/>
+
  <div class="youtubevideobg">
+
    <div class="igemvideo">
+
        <video poster="https://static.igem.org/mediawiki/2014/3/31/Videotopimage3.jpg" controls="" style="width:563px; height:302px;">
+
              <source  style="width:563px; height:302px;" src="https://static.igem.org/mediawiki/2014/3/30/Take_a_Stand_IGEM_IIT_DELHI_2014.mp4" type="video/mp4">
+
<a href="https://www.youtube.com/watch?v=RSS953TgzWk"><img border="0" src="https://static.igem.org/mediawiki/2014/3/31/Videotopimage3.jpg" alt="Click to view on Youtube" width="563" height="302"></a>
+
        </video>
+
    </div>
+
  </div>
+
<div class="fblike_share"><iframe src="//www.facebook.com/plugins/like.php?href=https%3A%2F%2Fwww.facebook.com%2Figemiitdelhi&amp;width=300&amp;layout=button_count&amp;action=like&amp;show_faces=false&amp;share=true&amp;height=21" scrolling="no" frameborder="0" style="border:none; overflow:hidden; width:300px; height:21px;" allowTransparency="true"></iframe></div>
+
  
<div class="twitter_follow"><a href="https://twitter.com/iGEM_IIT_Delhi" class="twitter-follow-button" data-show-count="false" data-dnt="true">Follow @iGEM_IIT_Delhi</a>
+
<h3 style="text-align:center">5. Output Module</h3> 
<script>!function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0],p=/^http:/.test(d.location)?'http':'https';if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src=p+'://platform.twitter.com/widgets.js';fjs.parentNode.insertBefore(js,fjs);}}(document, 'script', 'twitter-wjs');</script></div>
+
              <p class="highlighttext">In the first stage, the output module is the fluorescent indicator that can monitor the real-time processes of our system. Once its function is confirmed, we can use other functional parts as output to solve real world problems.</p>
  
</div>
+
<h5>RNA level fluorescence</h5>
 +
              <p class="highlighttext">Beside fluorescent proteins, we try to use an RNA-fluorophore complex (Paige <span style="font-style:italic;">et al.</span>, 2011) to monitor the real-time processes. The complex contains RNA aptamers and some corresponding fluorophores. We synthesized the fluorophore 3,5-dimethoxy-4-hydroxybenzylidene imidazolinone (DHMBI), because several aptamers were identified that exhibited markedly different spectral properties when they bound to DHMBI. We also synthesized the 13-2min sequence, one of the aptamers that can interact with DHMBI, with a modified tRNA scaffold, which can stabilize the structure.</p>
 +
<img src="https://static.igem.org/mediawiki/2014/d/d4/Hzau-project-5_meitu_1.jpg"  width="600px" class="img-center"/>
 +
<p class="figuretext">Figure 5. The resulting image under the fluorescent microscope.</p>
  
 +
            <div class="clear"></div>
 +
            <div class="divider"></div>
  
 +
<h3 style="text-align:center">6. Application</h3> 
 +
<h5>Multiple functions integration</h5>
 +
              <p class="highlighttext">Multiple functions integration is the general goal we want to achieve. As the number of system components grows, it becomes increasingly difficult to coordinate component inputs and outputs to produce the overall desired behavior. For this reason, we increase the complexity of the system by reusing the exist parts instead of addition of new parts. Our design allows the cells to run different functions at different time and it will not give extra burden to cells when a function is unnecessary.</p>
  
 +
<h5>Organism development</h5>
 +
              <p class="highlighttext">Many researches understand what orchestrates epigenomic changes by Waddington’s model of epigenetic determination of development (Fig. 6) (Mohammad and Baylin, 2010). From a dynamic view, the organism development is like jumping among different attractors. Once the cell falls into a stable steady state, it will be very hard to jump out. Many motifs in developmental network like mutual inhibition and double-positive feedback loop exhibit irreversibility unless the environment has a big change. If the gene circuit that decides the cell fate were rewirable, we could easily reprogram the cell.</p>
 +
<img src="https://static.igem.org/mediawiki/2014/a/a4/Hzau-project-10.gif"  width="730px" class="img-center"/>
 +
<p class="figuretext">Figure 6. Depiction of potential cell signaling in Waddington's model of epigenetic determination of development.</p>
  
<div class="sponsorsbg">
+
<h5>Living therapeutics</h5>
<div class="sponsortext"><p>OUR ESTEEMED SPONSORS</p></div>
+
<p class="highlighttext">The tumor suppressor p53 can induce cell cycle arrest or apoptosis according to degree of DNA damage. It was reported that p53 and its downstream targets applied an oscillation mode to repair DNA damage and chose a bistability mode to trigger apoptosis once the damage cannot be fixed by oscillation mode (Zhang <span style="font-style:italic;">et al.</span>, 2011). These functions were achieved by a very complex systems (Fig. 7).</p>
<div class="sponsors_iitd">
+
<img src="https://static.igem.org/mediawiki/2014/8/8a/Hzau-project-11.png"  width="700px" class="img-center"/>
 +
<p class="figuretext">Figure 7. A complex mechanism described in previous study.</p>
  
<div class="sponsors_iitd2">
+
<p class="highlighttext">In our design, we can achieve these functions by using only three genes and rewiring their regulatory pathway. We can construct an oscillation into the therapeutic bacterium that colonizes a niche in the human microbiome to maintain homeostasis. And once the the equilibrium is broken, the oscillation will be rewired to be a switch used for next decision.</p>
<div class="pic1">
+
<img class="smallpic" src="https://static.igem.org/mediawiki/2014/6/63/Mahindra_logo.png" alt="Abhishek">
+
<img class="picdescription" src="https://static.igem.org/mediawiki/2014/b/b9/Mahindra_text.png" alt="Abhishek">
+
</div>
+
  
<div class="pic2">
+
<h5>Environment improvement</h5>
<img class="smallpic" src="https://static.igem.org/mediawiki/2014/6/67/Idt_logo.png" alt="Abhishek">
+
<p class="highlighttext">Some environment projects in synthetic biology utilize an event trigger to keep expressing some special proteins to tackle the environmental problem. These systems often contain a positive feedback loop module that can memorize the received signal and activate the downstream functional protein. After the problem is handled, we don’t need the positive feedback module anymore, but it is difficult to stop this module. In this case, we can rewire the system rather than kill all these meritorious cells. The positive feedback module can be rewired to be a negative feedback module, which is used to maintain the lower steady state or control the population of the engineered cells. Once the environmental problem recurs, it can be rewired into a positive feedback one again.</p>
<img class="picdescription" src="https://static.igem.org/mediawiki/2014/4/49/Idt_text.png" alt="Abhishek">
+
</div>
+
  
<div class="pic3">
 
<img class="smallpic" src="https://static.igem.org/mediawiki/2014/4/4f/Fitt_logo.png" alt="Abhishek">
 
<img class="picdescription" src="https://static.igem.org/mediawiki/2014/5/54/Fitt_text.png" alt="Abhishek">
 
</div>
 
  
<div class="pic4">
+
<div class="clear"></div>
<img class="smallpic" src="https://static.igem.org/mediawiki/2014/7/71/Dbt_logo.png" alt="Abhishek">
+
<div class="divider"></div>
<img class="picdescription" src="https://static.igem.org/mediawiki/2014/7/7c/Dbt_text.png" alt="Abhishek">
+
              <h5>References</h5>
</div>
+
              <p class="highlighttext">Purnick, P. E., & Weiss, R. (2009). The second wave of synthetic biology: from modules to systems. Nature reviews Molecular cell biology, 10(6), 410-422.</p>
 
+
              <p class="highlighttext">Brophy, J. A., & Voigt, C. A. (2014). Principles of genetic circuit design. Nature methods, 11(5), 508-520.</p>
<div class="pic5">
+
<p class="highlighttext">Siuti, P., Yazbek, J., & Lu, T. K. (2013). Synthetic circuits integrating logic and memory in living cells. Nature biotechnology, 31(5), 448-452.</p>
<img class="smallpic" src="https://static.igem.org/mediawiki/2014/7/77/Posterguy.png" alt="Abhishek">
+
              <p class="highlighttext">Callura, J. M., Cantor, C. R., & Collins, J. J. (2012). Genetic switchboard for synthetic biology applications. Proceedings of the National Academy of Sciences, 109(15), 5850-5855.</p>
<img class="picdescription" src="https://static.igem.org/mediawiki/2014/b/b9/Posterguy_text.png" alt="Abhishek">
+
<p class="highlighttext">Paige, J. S., Wu, K. Y., & Jaffrey, S. R. (2011). RNA mimics of green fluorescent protein. Science, 333(6042), 642-646.</p>
</div>
+
<p class="highlighttext">Mohammad, H. P., & Baylin, S. B. (2010). Linking cell signaling and the epigenetic machinery. Nature biotechnology, 28(10), 1033-1038.</p>
 
+
<p class="highlighttext">Zhang, X. P., Liu, F., & Wang, W. (2011). Two-phase dynamics of p53 in the DNA damage response. Proceedings of the National Academy of Sciences,108(22), 8990-8995.</p>
 
+
</div>
+
</div>
+
 
+
</div><!--sponsor ends-->
+
 
+
 
+
<div class="footerbg">
+
 
+
<div class="nav2">
+
<table class="nav2table">
+
  <tr>
+
    <td><a href="https://2014.igem.org/Team:IIT_Delhi">HOME</a></td><td>|</td>
+
    <td><a href="https://2014.igem.org/Team:IIT_Delhi/Project">PROJECT</a></td><td>|</td>
+
    <td><a href="https://2014.igem.org/Team:IIT_Delhi/Modeling">MODELING</a></td><td>|</td>
+
    <td><a href="https://2014.igem.org/Team:IIT_Delhi/Team">TEAM</a></td><td>|</td>
+
    <td><a href="https://2014.igem.org/Team:IIT_Delhi/Notebook">NOTEBOOK</a></td><td>|</td>
+
    <td><a href="https://2014.igem.org/Team:IIT_Delhi/Attributions">ATTRIBUTIONS</a></td><td>|</td>
+
    <td><a href="https://2014.igem.org/Team:IIT_Delhi/Safety">SAFETY</a></td><td>|</td>
+
    <td><a href="https://2014.igem.org/Team:IIT_Delhi/Parts">PARTS</a></td><td>|</td>
+
    <td><a href="https://2014.igem.org/Team:IIT_Delhi/Achievements">ACHIEVEMENTS</a></td>
+
  </tr>
+
</table>
+
</div>
+
<div class="copyright"><p>Copyright &copy; iGEM-IIT Delhi 2014 | Developer: ABHISHEK BHARTI & SHASHANK YADAV </p>
+
<center>"We won a Bronze Medal at the iGEM Giant Jamboree 2014"</center></div>
+
 
+
</div>
+
 
+
<div class="gifouterdiv">
+
  <div class="gifbg"><img src="https://static.igem.org/mediawiki/2014/6/63/Story_of_ECO_COLI.gif"/></div>
+
  <div class="mascotinnerlayer"><img class="mascot_iitd" src="https://static.igem.org/mediawiki/2014/8/8b/Mascot_iitdelhi.gif"/></div>
+
</div>
+
 
+
 
+
 
+
<!--Slider=================================
+
 
+
<div class="slider2">
+
<div class="container3">
+
  <div id="content-slider">
+
    <div id="slider">
+
      <div id="mask">
+
          <ul>
+
            <li id="first" class="firstanimation">
+
              <a href="#">
+
                <img src="https://static.igem.org/mediawiki/2014/2/28/Iitdelhi.jpg" alt="iit delhi" />
+
              </a>
+
            </li>
+
 
+
            <li id="second" class="secondanimation">
+
            <a href="#">
+
              <img src="https://static.igem.org/mediawiki/2014/8/8a/Prof.jpg" alt="Discussion"/>
+
            </a>
+
            </li>
+
 
              
 
              
            <li id="third" class="thirdanimation">
 
            <a href="#">
 
            <img src="https://static.igem.org/mediawiki/2014/8/83/Presentation.jpg" alt="Presentation"/>
 
            </a>
 
           
 
            </li>
 
                       
 
            <li id="fourth" class="fourthanimation">
 
            <a href="#">
 
              <img src="https://static.igem.org/mediawiki/2014/c/c7/Sponsor.jpg" alt="Sponsor"/>
 
            </a>
 
            </li>
 
                       
 
            <li id="fifth" class="fifthanimation">
 
            <a href="#">
 
              <img src="https://static.igem.org/mediawiki/2014/b/b8/Team.jpg" alt="Team"/>
 
            </a>
 
            </li>
 
          </ul>
 
 
         </div>
 
         </div>
         <div class="progress-bar"></div>
+
         </div>
      </div>
+
 
     </div>
 
     </div>
  </div>
+
   
</div>
+
 
 +
</section>
 +
<!-- maincontent end here -->
  
-->
+
<!-- footer start here -->
 
+
<footer>
 
+
    <div class="row">
<!--Flip Menu==============================-->
+
         <div class="four columns mobile-one">
<!--
+
            <img src="https://static.igem.org/mediawiki/2014/c/cc/Hazulogo-w.png" alt="" class="img-left" width="200px"/>
<div id="container2" >
+
             <p class="copyright-text">&copy; 2014 Huazhong Agricultural University iGEM Team. All rights reserved.</p>
+
       
+
      <div class="wrapper" >
+
         <div class="item">
+
  <img src="https://static.igem.org/mediawiki/2014/2/23/Projectiitd.png" width="240px" height="81px" />
+
  <a href="https://2014.igem.org/Team:IIT_Delhi/Project">
+
             <span class="information"> <b> Description of our project </b></span>
+
          </a>
+
 
         </div>
 
         </div>
      </div>
+
         <div class="eight columns mobile-one">
      <div class="wrapper">
+
    <h5>Contacts</h5>
         <div class="item">
+
             <div class="six columns mobile-one">
          <img src="https://static.igem.org/mediawiki/2014/c/cf/Partsiitd.png"  width="240px" height="81px"/>
+
                <ul>               
            <a href="https://2014.igem.org/Team:IIT_Delhi/Parts">
+
            <li class="address-icon">No.1, Shizishan Street, Hongshan District<br />Wuhan, Hubei Province<br />430070 P.R.China</li>
              <span class="information"> parts used, developed and submitted to the registry !</span>
+
            <li class="email-icon">Email : hzauigem@gmail.com</li>          
             </a>
+
                </ul>
        </div>
+
             </div>
      </div>
+
            <div class="six columns mobile-one">
      <div class="wrapper">
+
                <ul>
        <div class="item">
+
<li class="twitter-icon">Twitter : hzau_igem</li>
          <img src="https://static.igem.org/mediawiki/2014/b/bd/Modeling_copy.png"  width="240px" height="81px"/>
+
<li class="wechat-icon">Wechat : hzauigem</li>
            <a href="https://2014.igem.org/Team:IIT_Delhi/Modeling">
+
<li class="qq-icon">QQ Group : 313297095</li>
               <span class="information"> prediction of our results using simulink !</span>
+
                <li class="y-icon">YouTube : hzauigem</li>
            </a>
+
                </ul>
        </div>
+
             </div>
      </div>
+
</div>
      <div class="wrapper">
+
        <div class="item">
+
          <img src="https://static.igem.org/mediawiki/2014/1/1f/Teamiitd.png" width="240px" height="81px"/>
+
            <a href="https://2014.igem.org/Team:IIT_Delhi/Team">
+
              <span class="information">our hardworking team !</span>
+
            </a>
+
        </div>
+
      </div>
+
      <div class="wrapper">
+
        <div class="item">
+
          <img src="https://static.igem.org/mediawiki/2014/e/e8/Notebookiitd.png" width="240px" height="81px"/>
+
            <a href="https://2014.igem.org/Team:IIT_Delhi/Notebook">
+
              <span class="information">our detailed datewise work manual !</span>
+
             </a>
+
        </div>
+
      </div>
+
      <div class="wrapper">
+
        <div class="item">
+
          <img src="https://static.igem.org/mediawiki/2014/e/e8/Safetyiitd.png" width="240px" height="81px"/>
+
          <a href="https://2014.igem.org/Team:IIT_Delhi/Safety">
+
            <span class="information">safety form about the working conditions in our lab</span>
+
          </a>
+
        </div>
+
      </div>
+
      <div class="wrapper">
+
        <div class="item">
+
          <img src="https://static.igem.org/mediawiki/2014/9/9e/Attributes_copy.png"  width="240px" height="81px"/>
+
          <a href="https://2014.igem.org/Team:IIT_Delhi/Attributions">
+
            <span class="information">attributions</span>
+
          </a>
+
        </div>
+
      </div>
+
      <div class="wrapper">
+
        <div class="item">
+
        <img src="https://static.igem.org/mediawiki/2014/0/02/Sponsorsiitd.png" width="240px" height="81px"/>
+
          <a href="https://2014.igem.org/Team:IIT_Delhi/sponsors">
+
             <span class="information">thanks to our sponsors !</span>
+
          </a>
+
        </div>
+
      </div>
+
   
+
 
     </div>
 
     </div>
-->
+
</footer>
<!--Flip Menu ends here============== -->
+
<!-- footer end here -->
<!--Video1================================-->
+
     
 +
<script>$('#noscript').remove();</script>
  
<!--Crowd funding========================-->
 
 
 
<!--Facebook plugin========================-->
 
 
 
<!--tweeter plugin==========================-->
 
 
<!--Footer===========================================-->
 
 
 
 
<div class="footer">
 
 
<!-- Navigation bar at footer-->
 
<div class="nav2">
 
<table class="nav2table">
 
  <tr>
 
    <td><a href="https://2014.igem.org/Team:IIT_Delhi">HOME</a></td><td>|</td>
 
    <td><a href="https://2014.igem.org/Team:IIT_Delhi/Project">PROJECT</a></td><td>|</td>
 
    <td><a href="https://2014.igem.org/Team:IIT_Delhi/Modeling">MODELING</a></td><td>|</td>
 
    <td><a href="https://2014.igem.org/Team:IIT_Delhi/Team">TEAM</a></td><td>|</td>
 
    <td><a href="https://2014.igem.org/Team:IIT_Delhi/Notebook">NOTEBOOK</a></td><td>|</td>
 
    <td><a href="https://2014.igem.org/Team:IIT_Delhi/Attributions">ATTRIBUTIONS</a></td><td>|</td>
 
    <td><a href="https://2014.igem.org/Team:IIT_Delhi/Safety">SAFETY</a></td><td>|</td>
 
    <td><a href="https://2014.igem.org/Team:IIT_Delhi/Parts">PARTS</a></td>
 
  </tr>
 
</table>
 
</div>
 
<div class="maplink">
 
  <table class="maptable">
 
    <tr><td><a href="http://www.iitd.ac.in/" target="_blank">Indian Institute of Technology (IIT) Delhi, India</a></td>
 
        <td>|</td>
 
        <td><a href="https://www.google.com/maps/place/Indian+Institute+of+Technology+Delhi" target="_blank">View Map</a></td><td></td>
 
    </tr>
 
  </table>
 
</div>
 
<div class="copyright"><p>Copyright &copy; iGEM-IIT Delhi 2014 | Contact: <a href="https://plus.google.com/u/0/+AbhishekBharti26/posts" target="_blank">Developer</a></p></div>
 
 
 
</div>
 
 
 
 
 
</div>
 
 
 
</body>
 
</body>
 
</html>
 
</html>

Revision as of 16:38, 22 June 2015

<!DOCTYPE html> 2014HZAU-China

Project

1. Overview

Cells sense the environment, process information, and make response to stimuli. To make cells work well in complex natural environments, lots of processes have to be preset to react to various signals. However, when well-characterized modules are combined to construct higher order systems, unpredictable behaviors often occur because of the interplay between modules. Another significant problem is that complex integrated systems composed of numerous parts may cause cell overload.

We proposed an elegant method to design higher order systems. Instead of merely combining different functional modules, we constructed one integrated processing module with fewer parts by utilizing the common structures between modules. The circuit we designed is a rewirable one and the topological structure of the processing module can be altered to adapt to environmental change. The basic idea is to rewire the connections between parts and devices to implement multiple functions with the help of the site-specific recombination systems.

Based on the design principle we put forward, we built two circuits to verify our idea. Each circuit has three modules including an input module, a processing module, and an output module. The input module receives environmental signal and triggers the rewiring of the processing module. The output module monitors real-time processes using fluorescence intensity.

Our design approach may lead to a revolutionary step towards system integration in synthetic biology. Potential fields of application include organism development, living therapeutics and environment improvement.

2. Background

Since its inception more than a decade ago, synthetic biology has undergone considerable development and has attained significant achievements with the help of the engineering slant. However, there are still obstacles to build a cell. Engineers try to abstract the DNA sequences into some standard functional parts and assemble them using some principles in electrical engineering. So far, the limited understanding of biological system prevents us to combine parts and modules to create larger scale systems. The complexity of synthetic systems didn’t increase rapidly as the Moore’s law (Purnick and Weiss, 2009).

Challenges

There are some common problems that make the circuits we designed not work as our expected. Many failure modes have been collated by Brophy and Voigy in their review (Brophy and Voigt, 2014). In our project, we mainly focus on two modes, crosstalk and host overload, that emerge especially when we create more sophisticated systems. More specifically, regulators may interact with each other’s targets leading to errors in the desired operation, and the synthetic circuits may compete with natural parts that maintain the normal cellular processes for limited resources.

Solution

We designed a time-sharing system that can process information according to the input signal. Cells rewire its synthetic circuit to alter the topological structure of regulatory pathway when they receive the corresponding stimuli. In this way, we reuse the existing synthetic module rather than add a new one to implement another function, which reduces the resource cost in running unnecessary function and prevents the interplay between parallel modules. After overcoming these two big problems, our engineered cells are more versatile and flexible in information processing.

3. Input Module

The input module is in charge of the expression of recombinase according to the received signals. When there’s no input signal, there is leaky expression. Such leakage may unexpectedly alter the function of the processing module. So we need tighter regulation. We cloned the recombinase under the control of the inducible riboregulators (Callura et al., 2012; Bonnet et al., 2013).

Site-specific recombination

The site-specific recombination system we used in our project is Cre recombinase meditated inversion system. We chose two mutant loxP sites, lox66 and lox71, instead of the wild-type loxP sites. After the first Cre-mediated recombination, one wild-type loxP site and one double mutant loxP site are generated. The double mutant loxP site, lox72, exhibits a very low affinity to Cre recombinase. So it can be regarded as a unidirectional one, or an irreversible one.

Riboregulator

In a riboregulator, the cis-repressed RNA is like a lock, and the trans-activating RNA is like a key. When they reach a certain concentration, the trans-activating RNA is designed to target and hybridize to the stem-loop of the crRNA message. The resulting RNA duplex causes a conformational change in the crRNA that unfolds the stem-loop, exposing the RBS and permitting translation. In this way we can achieve a post-transcriptional control.

Coherent feedforward loop

We incorporated a coherent feedforward loop into our input module. This motif can provide pulse filtration in which short pulses of signal will not generate a response but persistent signals will generate a response after short delay. So we utilized this property to filter noise.

4. Processing Module

Motivation

Many engineered cells that worked well in a laboratory environment didn’t work well in complex natural environments. Natural cell can adapt to the environment since they have a hierarchical regulatory network. So we want to integrate multiple processing functions in our engineered cells. Taking the limited resources in cells into account, we construct one integrated processing module with fewer parts by utilizing the common structures between modules, instead of merely combining different functional modules.

How we design

We put forward a concept of rewirable circuit. The topological structure of regulatory pathway can be modified to adapt to environmental change. First, we constructed a transcription regulatory pathway by combining inducible promoters and corresponding regulators. Besides, we added some special sequences into the synthetic circuit. These sites can be recognized by recombinase protein and help to rearrange the parts connection by site-specific recombination. After the rearrangement, the circuit we designed is rewired to achieve another function.

We use two examples to demonstrate our idea, and we will describe the general steps about how to design rewirable circuits in the modeling part.

In design 1, the processing module is similar to the classic repressilator, which is composed of three NOT gates. cI represses tetR, which represses lacI, which represses cI. What's different is that the transcription directions of these three genes in our design are no longer the same as that in the classic repressilator. This is because we want to put two promoters more closely. And we add a pair of reversed lox sites on either side of the promoters (Fig. 1).

Figure 1. Circuit in design 1.

After rewiring the circuit, the regulatory relationship among these three genes is altered. It is now that cI represses lacI. So cI and lacI inhibit each other. And the repressilator which is composed of three NOT gates is rewired to be a toggle switch composed of two NOT gates(Fig. 2).

Figure 2. Abstract structure in design 1.

In design 2, the parts we used are from a quorum sensing system. When the signal molecule AHL binds to luxR proteins, it activates the luxpR promoter and represses the luxpL promoter. LuxI synthesizes more AHL and AiiA contributes to the degradation of AHL. We used luxpR promoter to express luxI and used luxpL promoter to express AiiA (Fig. 3). Then a direct positive feedback loop and an indirect positive feedback loop formed (Fig. 4). When the inversion happens, it’s now luxpR that will express AiiA and it's luxpL that will express luxI (Fig. 3). So now more AHL will repress its own production, and will activate its own degradation. And this is a negative feedback loop (Fig. 4).

Figure 3. Circuit in design 2.

Figure 4. Abstract structure in design 2.

5. Output Module

In the first stage, the output module is the fluorescent indicator that can monitor the real-time processes of our system. Once its function is confirmed, we can use other functional parts as output to solve real world problems.

RNA level fluorescence

Beside fluorescent proteins, we try to use an RNA-fluorophore complex (Paige et al., 2011) to monitor the real-time processes. The complex contains RNA aptamers and some corresponding fluorophores. We synthesized the fluorophore 3,5-dimethoxy-4-hydroxybenzylidene imidazolinone (DHMBI), because several aptamers were identified that exhibited markedly different spectral properties when they bound to DHMBI. We also synthesized the 13-2min sequence, one of the aptamers that can interact with DHMBI, with a modified tRNA scaffold, which can stabilize the structure.

Figure 5. The resulting image under the fluorescent microscope.

6. Application

Multiple functions integration

Multiple functions integration is the general goal we want to achieve. As the number of system components grows, it becomes increasingly difficult to coordinate component inputs and outputs to produce the overall desired behavior. For this reason, we increase the complexity of the system by reusing the exist parts instead of addition of new parts. Our design allows the cells to run different functions at different time and it will not give extra burden to cells when a function is unnecessary.

Organism development

Many researches understand what orchestrates epigenomic changes by Waddington’s model of epigenetic determination of development (Fig. 6) (Mohammad and Baylin, 2010). From a dynamic view, the organism development is like jumping among different attractors. Once the cell falls into a stable steady state, it will be very hard to jump out. Many motifs in developmental network like mutual inhibition and double-positive feedback loop exhibit irreversibility unless the environment has a big change. If the gene circuit that decides the cell fate were rewirable, we could easily reprogram the cell.

Figure 6. Depiction of potential cell signaling in Waddington's model of epigenetic determination of development.

Living therapeutics

The tumor suppressor p53 can induce cell cycle arrest or apoptosis according to degree of DNA damage. It was reported that p53 and its downstream targets applied an oscillation mode to repair DNA damage and chose a bistability mode to trigger apoptosis once the damage cannot be fixed by oscillation mode (Zhang et al., 2011). These functions were achieved by a very complex systems (Fig. 7).

Figure 7. A complex mechanism described in previous study.

In our design, we can achieve these functions by using only three genes and rewiring their regulatory pathway. We can construct an oscillation into the therapeutic bacterium that colonizes a niche in the human microbiome to maintain homeostasis. And once the the equilibrium is broken, the oscillation will be rewired to be a switch used for next decision.

Environment improvement

Some environment projects in synthetic biology utilize an event trigger to keep expressing some special proteins to tackle the environmental problem. These systems often contain a positive feedback loop module that can memorize the received signal and activate the downstream functional protein. After the problem is handled, we don’t need the positive feedback module anymore, but it is difficult to stop this module. In this case, we can rewire the system rather than kill all these meritorious cells. The positive feedback module can be rewired to be a negative feedback module, which is used to maintain the lower steady state or control the population of the engineered cells. Once the environmental problem recurs, it can be rewired into a positive feedback one again.

References

Purnick, P. E., & Weiss, R. (2009). The second wave of synthetic biology: from modules to systems. Nature reviews Molecular cell biology, 10(6), 410-422.

Brophy, J. A., & Voigt, C. A. (2014). Principles of genetic circuit design. Nature methods, 11(5), 508-520.

Siuti, P., Yazbek, J., & Lu, T. K. (2013). Synthetic circuits integrating logic and memory in living cells. Nature biotechnology, 31(5), 448-452.

Callura, J. M., Cantor, C. R., & Collins, J. J. (2012). Genetic switchboard for synthetic biology applications. Proceedings of the National Academy of Sciences, 109(15), 5850-5855.

Paige, J. S., Wu, K. Y., & Jaffrey, S. R. (2011). RNA mimics of green fluorescent protein. Science, 333(6042), 642-646.

Mohammad, H. P., & Baylin, S. B. (2010). Linking cell signaling and the epigenetic machinery. Nature biotechnology, 28(10), 1033-1038.

Zhang, X. P., Liu, F., & Wang, W. (2011). Two-phase dynamics of p53 in the DNA damage response. Proceedings of the National Academy of Sciences,108(22), 8990-8995.

Contacts
  • No.1, Shizishan Street, Hongshan District
    Wuhan, Hubei Province
    430070 P.R.China
  • Wechat : hzauigem
  • QQ Group : 313297095
  • YouTube : hzauigem