Difference between revisions of "Team:Nankai/Results"

Line 120: Line 120:
  
 
<div class="col-md-8 blog-posts">
 
<div class="col-md-8 blog-posts">
<h4>What is γ-PGA?</h4>
+
<h4>1. Promoter strength assay in Bacillus amyloliquefaciens NK-1</h4>
<p>Poly-γ-glutamic acid (γ-PGA) is an important, naturally occurring polyamide consisting of D/L-glutamate monomers. Unlike typical peptide linkages, the amide linkages in γ-PGA are formed between the α-amino group and the γ-carboxyl group. γ-PGA exhibits many favorable features such as biodegradable, water soluble, edible and non-toxic to humans and the environment. Therefore, it has been widely used in fields of foods, medicines, cosmetics and agriculture and many unique applications, such as a sustained release material and drug carrier, curable biological adhesive, biodegradable fibres, and highly water absorbable hydrogels.</br></p>
+
<p>Six candidate promoters were digested by reletive endonucleases and ligated to the verification vector pCB with a reporter gene bgaB which encodes β-galatosidase (Figure 1). </p>
<h4>How can we produce it?</h4>
+
<p>As shown in Figure 2, promoter C2up is the strongest promoter, about 60 times stronger than Pbca. Promoter PamyA and A2up are both strong promoters, about 45 and 42 times stronger than Pbca. Promoter P43 and BJ27up, though, are weak promoters, about 5 times and 3 times stronger than Pbca.</p>
<p>Strains capable for producing γ-PGA are divided into two categories based on their requirement for glutamate acid: glutamate-dependent strains and glutamate-independent strains. Glutamate-independent strains are preferable for industrial production because of their low cost and simplified fermentation process. However, compared with glutamate-dependent strains, their lower γ-PGA productivity limits their industrial application. Therefore, the construction of a glutamate-independent strain with high γ-PGA yield is important for industrial applications.</br></p>
+
<h4>2. Metabolic toggle switch function assay</h4>
<h4>Who can produce it?</h4>
+
<p>To verify the function of the metabolic toggle switch, the xylR gene was ligated into the pHT01 plasmid to construct a XylR expression plasmid pHT01-xylR. Pxyl was ligated into the pCB plasmid to construct the reporter plasmid pCB-Pxyl. The electrophoretograms of both plasmids are shown in Figure 3.</p>
<p>Bacillusamyloliquefaciens LL3, isolated from fermented food, is a glutamate-independent strain, which can produce 3-4 g/L γ-PGA with sucrose as its carbon source and ammonium sulfate as its nitrogen source. The B. amyloliquefaciens LL3 strain was deposited in the China Center for Type Culture Collection (CCTCC) with accession number CCTCC M 208109 and its whole genome has been sequenced in 2011. In this study, we aimed to improve the γ-PGA production based on the B. amyloliquefaciens NK-1 strain (a derivative of LL3 strain with its endogenous plasmid and upp gene deleted).</br></p>
+
<p>We transformed the plasmids pHT01-xylR and pCB-Pxyl into the NK-1 strain, to verify the activity of metabolic toggle switch. Fresh colonies of B. amyloliquefaciens strains (NK-1 strain containing plasmids pHT01-xylR and pCB-Pxyl and the control NK-1 strain containing plasmids pHT01 and pCB-Pxyl) were first cultured overnight in test tubes containing 5 mL LB liquid and then inoculated into 100 mL fresh fermentation medium. We added 1mM IPTG into the medium after 12h of cultivation. The β-galactosidase activity were measured at 12h, 18h, 24h, 30h, 36h, 42h to test the effect of metabolic toggle switch on the expression of bgaB.</p>
<h4>What did we do?</h4>
+
<p>As shown in Figure 4, β-galactosidase enzyme activity dropped considerably after 30 hours of fermentation. The inhibited expression of bgsB in experiment group (NPP+IPTG) indicated that the metabolic toggle switch we constructed is functional in B. amyloliquefaciens NK-1 strain.</p>
<p>In order to improve γ-PGA production, we employed two strategies to fine-tune the synthetic pathways and balance the metabolism in the glutamate-independent B. amyloliquefaciens NK-1 strain. Firstly, we constructed a metabolic toggle switch in the NK-1 strain to inhibit the expression of ODHC (2-oxoglutarate dehydrogenase complex) by adding IPTG in the stationary stage and distribute the metabolic flux more frequently to be used for γ-PGA precursor-glutamate synthesis. As scientists had found that the activity of ODHC was rather low when glutamate was highly produced in a Corynebacterium glutamicum strain. Second, to balance the increase of endogenous glutamate production, we optimized the expression level of pgsBCA genes (responsible for γ-PGA synthesis) by replacing its native promoter to seven different strength of promoters. Through these two strategies, we aimed to obtain a γ-PGA production improved mutant strain.<a href="https://2015.igem.org/Team:Nankai/Experiments">Click for more detail.</a></p>
+
<h4>3. Metabolic toggle switch’s affect on γ-PGA production</h4>
 +
<p>We first constructed a recombinant plasmid pKSU-Pxyl (Figure 5) by intergrating Pxyl promoter into plasmid pKSU. Then we inserted Pxyl into the B. amyloliquefaciens NK-1’s chromosome by markerless gene replacement method (see it in experiment and protocols), to replace Pbca, the orgianal promoter of pgsBCA genes (Figure 6). The genetrated strain was designated as B. amyloliquefaciens NK-TP.</p>
 +
<p>To find out the proper IPTG adding time, we added 1mM IPTG into the medium at different time points (0h, 3h, 6h, 9h, 12h, 15h, 18h, 21h and 24h). According to the γ-PGA fermentation results, we found that the proper IPTG adding time is 15 hours. The highest γ-PGA titer was 4.15 g/L which is about 62.5% higer than that of wild type NK-1 strain (2.55g/L) and 87.5% higher than that of control group (2.21g/L).</p>
 +
<h4>4. Replacement of promoters</h4>
 +
<p>In order to replace promoter Pbca (the original promoter of pgsBCA) with the candidate promoters, we constructed five promoter recombinant plasmids. As shown in Figure 7, the five promoter recombinant plasmids have been successfully constructed.</p>
 +
<p>Among those candidate promoters, the promoter BJ27up has been successfully inserted into the chromosome of B. amyloliquefaciens NK-TP (showed in Figure 8). The BJ27up promoter insertion strain was designated as NK-BJ27up.</p>
 
 
 
</div> <!-- /.col-md-8 -->
 
</div> <!-- /.col-md-8 -->

Revision as of 15:03, 17 September 2015

Medigo Blue, free responsive template

Your place: Home > Project > Result

Project Result

1. Promoter strength assay in Bacillus amyloliquefaciens NK-1

Six candidate promoters were digested by reletive endonucleases and ligated to the verification vector pCB with a reporter gene bgaB which encodes β-galatosidase (Figure 1).

As shown in Figure 2, promoter C2up is the strongest promoter, about 60 times stronger than Pbca. Promoter PamyA and A2up are both strong promoters, about 45 and 42 times stronger than Pbca. Promoter P43 and BJ27up, though, are weak promoters, about 5 times and 3 times stronger than Pbca.

2. Metabolic toggle switch function assay

To verify the function of the metabolic toggle switch, the xylR gene was ligated into the pHT01 plasmid to construct a XylR expression plasmid pHT01-xylR. Pxyl was ligated into the pCB plasmid to construct the reporter plasmid pCB-Pxyl. The electrophoretograms of both plasmids are shown in Figure 3.

We transformed the plasmids pHT01-xylR and pCB-Pxyl into the NK-1 strain, to verify the activity of metabolic toggle switch. Fresh colonies of B. amyloliquefaciens strains (NK-1 strain containing plasmids pHT01-xylR and pCB-Pxyl and the control NK-1 strain containing plasmids pHT01 and pCB-Pxyl) were first cultured overnight in test tubes containing 5 mL LB liquid and then inoculated into 100 mL fresh fermentation medium. We added 1mM IPTG into the medium after 12h of cultivation. The β-galactosidase activity were measured at 12h, 18h, 24h, 30h, 36h, 42h to test the effect of metabolic toggle switch on the expression of bgaB.

As shown in Figure 4, β-galactosidase enzyme activity dropped considerably after 30 hours of fermentation. The inhibited expression of bgsB in experiment group (NPP+IPTG) indicated that the metabolic toggle switch we constructed is functional in B. amyloliquefaciens NK-1 strain.

3. Metabolic toggle switch’s affect on γ-PGA production

We first constructed a recombinant plasmid pKSU-Pxyl (Figure 5) by intergrating Pxyl promoter into plasmid pKSU. Then we inserted Pxyl into the B. amyloliquefaciens NK-1’s chromosome by markerless gene replacement method (see it in experiment and protocols), to replace Pbca, the orgianal promoter of pgsBCA genes (Figure 6). The genetrated strain was designated as B. amyloliquefaciens NK-TP.

To find out the proper IPTG adding time, we added 1mM IPTG into the medium at different time points (0h, 3h, 6h, 9h, 12h, 15h, 18h, 21h and 24h). According to the γ-PGA fermentation results, we found that the proper IPTG adding time is 15 hours. The highest γ-PGA titer was 4.15 g/L which is about 62.5% higer than that of wild type NK-1 strain (2.55g/L) and 87.5% higher than that of control group (2.21g/L).

4. Replacement of promoters

In order to replace promoter Pbca (the original promoter of pgsBCA) with the candidate promoters, we constructed five promoter recombinant plasmids. As shown in Figure 7, the five promoter recombinant plasmids have been successfully constructed.

Among those candidate promoters, the promoter BJ27up has been successfully inserted into the chromosome of B. amyloliquefaciens NK-TP (showed in Figure 8). The BJ27up promoter insertion strain was designated as NK-BJ27up.

Medigo Blue, free responsive template