Difference between revisions of "Team:KU Leuven/Future/More applications"

Line 66: Line 66:
 
First of all, our project has the goal to unravel the secrets of nature according to pattern formation. A better understanding of the pattern formation process in combination with the appropriate and detailed predictive mathematical models will also be advantageous in many different fields.
 
First of all, our project has the goal to unravel the secrets of nature according to pattern formation. A better understanding of the pattern formation process in combination with the appropriate and detailed predictive mathematical models will also be advantageous in many different fields.
 
                 </p>
 
                 </p>
 
+
</div>
 +
<div class="part">
 
                 <h2>
 
                 <h2>
 
                 Tumor formation and the development of metastasis   
 
                 Tumor formation and the development of metastasis   
Line 72: Line 73:
  
 
                 <p>  Tumor formation and tissue regeneration are a few among the many examples where the <b>medical</b> world could benefit from a deeper knowledge of pattern formation.   
 
                 <p>  Tumor formation and tissue regeneration are a few among the many examples where the <b>medical</b> world could benefit from a deeper knowledge of pattern formation.   
                 </p>
+
                 </p></div>
 
+
<div class="part">
 
                 <h2>
 
                 <h2>
 
                 Miniature electrical conductors   
 
                 Miniature electrical conductors   
Line 81: Line 82:
 
In the long term, the ability to construct predesigned patterns of bacteria could lead to applications in miniature electrical conductors and/or electrical circuits as well. The first step is to create the desired pattern, whereafter the bacteria can deposit electrical conducting substances.  
 
In the long term, the ability to construct predesigned patterns of bacteria could lead to applications in miniature electrical conductors and/or electrical circuits as well. The first step is to create the desired pattern, whereafter the bacteria can deposit electrical conducting substances.  
 
                 </p>
 
                 </p>
 
+
</div>
 +
<div class="part">
 
                 <h2>
 
                 <h2>
 
                 New biomaterials
 
                 New biomaterials
Line 102: Line 104:
 
<div class="subsectionwrapper">
 
<div class="subsectionwrapper">
 
<div class="subimgrow">
 
<div class="subimgrow">
 +
<div class="whitespace1"></div>
 
<div class="subimg">
 
<div class="subimg">
 
<a href="https://2015.igem.org/Team:KU_Leuven/Future/Economic potential analysis">
 
<a href="https://2015.igem.org/Team:KU_Leuven/Future/Economic potential analysis">
Line 125: Line 128:
 
</a>
 
</a>
 
</div>
 
</div>
 +
<div class="whitespace1"></div>
 
</div>
 
</div>
  
 
<div class="subtextrow">
 
<div class="subtextrow">
 +
<div class="whitespace1"></div>
 
<div class="subtext">
 
<div class="subtext">
 
<a href="https://2015.igem.org/Team:KU_Leuven/Future/Economic potential analysis">
 
<a href="https://2015.igem.org/Team:KU_Leuven/Future/Economic potential analysis">
Line 160: Line 165:
 
</a>
 
</a>
 
</div>
 
</div>
 +
<div class="whitespace1"></div>
 
</div>
 
</div>
  
 
<div class="subimgreadmore">
 
<div class="subimgreadmore">
 +
<div class="whitespace1"></div>
 
<div class="subimgrm">
 
<div class="subimgrm">
 
<a href="https://2015.igem.org/Team:KU_Leuven/Future/Economic potential analysis">
 
<a href="https://2015.igem.org/Team:KU_Leuven/Future/Economic potential analysis">
Line 192: Line 199:
 
</a>
 
</a>
 
</div>
 
</div>
 +
<div class="whitespace1"></div>
 
</div>
 
</div>
  
Line 197: Line 205:
 
<div class="subimgrowm">
 
<div class="subimgrowm">
 
<div class="subimgm">
 
<div class="subimgm">
  <a href="https://2015.igem.org/Team:KU_Leuven/Research/Parts" >
+
  <a href="https://2015.igem.org/Team:KU_Leuven/Future/Economic potential analysis" >
 
     <b>Parts</b>
 
     <b>Parts</b>
 
  <img src="https://static.igem.org/mediawiki/2015/e/e6/KU_Leuven_Wiki_Button_-_Parts2.png" width="100%" ></a>
 
  <img src="https://static.igem.org/mediawiki/2015/e/e6/KU_Leuven_Wiki_Button_-_Parts2.png" width="100%" ></a>
Line 206: Line 214:
  
 
   <div class="subtextm">
 
   <div class="subtextm">
       <a href="https://2015.igem.org/Team:KU_Leuven/Research/Parts" >
+
       <a href="https://2015.igem.org/Team:KU_Leuven/Future/Future collaboration" >
 
         <p>
 
         <p>
 
           A detailed description about the interaction between our two cells and the genetic circuit can be found here.
 
           A detailed description about the interaction between our two cells and the genetic circuit can be found here.
Line 284: Line 292:
 
width="95%"></a>
 
width="95%"></a>
 
</div>
 
</div>
 +
<div id="saillart">
 +
      <a href="http://www.glasatelier-saillart.be/"><img src="https://static.igem.org/mediawiki/2015/c/ce/KU_Leuven_Sponsor_Saillard.png" alt="Glasatelier Saillart" width="95%"></a>
 +
  </div>
 
<div id="kuleuven">
 
<div id="kuleuven">
 
<a href="http://www.kuleuven.be/english"><img alt="bioSCENTer"
 
<a href="http://www.kuleuven.be/english"><img alt="bioSCENTer"
Line 297: Line 308:
 
<a><img alt="Ko-Lo Instruments"
 
<a><img alt="Ko-Lo Instruments"
 
src="https://static.igem.org/mediawiki/2015/1/15/KUL_Ko-Lo_Instruments_logo_transparant.png"
 
src="https://static.igem.org/mediawiki/2015/1/15/KUL_Ko-Lo_Instruments_logo_transparant.png"
width="95%"></a>
 
</div>
 
<div id="regensys">
 
<a href="http://regenesys.eu/"><img alt="Regenesys"
 
src="https://static.igem.org/mediawiki/2015/e/eb/KU_Leuven_Logo_Regenesys_Transparant.png"
 
 
width="95%"></a>
 
width="95%"></a>
 
</div>
 
</div>
Line 312: Line 318:
 
width="95%"></a>
 
width="95%"></a>
 
</div>
 
</div>
<div id="thermofisher">
+
<div class="logonormal">
<a href="https://www.fishersci.com/us/en/home.html"><img alt="Thermo Fisher Scientific"
+
<div id="regensys">
src="https://static.igem.org/mediawiki/2015/a/aa/KUL_Fischer_Scientific_logo_transparant.png"
+
      <a href="http://regenesys.eu/"><img src="https://static.igem.org/mediawiki/2015/e/eb/KU_Leuven_Logo_Regenesys_Transparant.png" alt="Regenesys" width="95%"></a>
width="95%"></a>
+
  </div>
 +
<div class="whiterow"></div>
 +
  <div id="thermofisher">
 +
      <a href="https://www.fishersci.com/us/en/home.html"><img src="https://static.igem.org/mediawiki/2015/a/aa/KUL_Fischer_Scientific_logo_transparant.png" alt="Thermo Fisher Scientific" width="95%"></a>
 +
  </div>
 
</div>
 
</div>
 
<div id="vwr">
 
<div id="vwr">
Line 339: Line 349:
 
</div>
 
</div>
 
<div class="logosmall">
 
<div class="logosmall">
<div id="sigma">
+
    <div id="sigma">
<a href="https://www.sigmaaldrich.com/belgium-nederlands.html"><img alt="Sigma-Aldrich"
+
      <a href="https://www.sigmaaldrich.com/belgium-nederlands.html"><img src="https://static.igem.org/mediawiki/2015/4/4b/KUL_Sigma-Aldrich_logo_transparant.png" alt="Sigma-Aldrich" width="95%"></a>
src="https://static.igem.org/mediawiki/2015/4/4b/KUL_Sigma-Aldrich_logo_transparant.png"
+
    </div>
width="95%"></a>
+
    <div class="whiterow"></div>
</div>
+
    <div id="egilab">
<div id="egilabo">
+
      <a href="http://www.egilabo.be/"><img src="https://static.igem.org/mediawiki/2015/e/e9/KUL_Egilabo_logo_transparant.png" alt="Egilabo" width="95%"></a>
<a href="http://www.egilabo.be/"><img alt="Egilabo"
+
    </div>
src="https://static.igem.org/mediawiki/2015/e/e9/KUL_Egilabo_logo_transparant.png"
+
    <div class="whiterow"></div>
width="95%"></a>
+
    <div id="novolab">
</div>
+
      <a href="https://www.novolab.be/"><img src="https://static.igem.org/mediawiki/2015/4/4c/KU_Leuven_Novalab.png" alt="Novolab" height="95%"></a>
</div>
+
    </div>
 +
  </div>  
 
</div>
 
</div>
  

Revision as of 16:41, 17 September 2015

More applications

First of all, our project has the goal to unravel the secrets of nature according to pattern formation. A better understanding of the pattern formation process in combination with the appropriate and detailed predictive mathematical models will also be advantageous in many different fields.

Tumor formation and the development of metastasis

Tumor formation and tissue regeneration are a few among the many examples where the medical world could benefit from a deeper knowledge of pattern formation.

Miniature electrical conductors

In the long term, the ability to construct predesigned patterns of bacteria could lead to applications in miniature electrical conductors and/or electrical circuits as well. The first step is to create the desired pattern, whereafter the bacteria can deposit electrical conducting substances.

New biomaterials

The generation of patterns in a controlled way will also allow the production of novel biomaterials. After forming a pattern, the cells can be engineered to precipitate or deposit networked biominerals, opening up exciting new avenues for the production of microstructured biocomposite materials.

Contact

Address: Celestijnenlaan 200G room 00.08 - 3001 Heverlee
Telephone: +32(0)16 32 73 19
Email: igem@chem.kuleuven.be