Difference between revisions of "Team:USTC/Parts"

Line 9: Line 9:
 
         <ul class="tabs tabs-wrapper transparent">
 
         <ul class="tabs tabs-wrapper transparent">
 
             <li class="tab col l2 m2 s2">
 
             <li class="tab col l2 m2 s2">
                 <a href="#Overview" class="blue-text active waves-effect waves-light">Overview</a>
+
                 <a href="#Basic_Parts" class="blue-text active waves-effect waves-light">Basic Parts</a>
 
             </li>
 
             </li>
 
             <li class="tab col l2 m2 s2">
 
             <li class="tab col l2 m2 s2">
                 <a href="#Chemotaxis_Modification" class="blue-text waves-effect waves-light">Chemotaxis
+
                 <a href="#Composite_Parts" class="blue-text waves-effect waves-light">Composite Parts</a>
                    Modification</a>
+
            </li>
+
            <li class="tab col l2 m2 s2">
+
                <a href="#Permeability_Improvement"
+
                  class="blue-text waves-effect waves-light">Permeability Improvement</a>
+
            </li>
+
            <li class="tab col l2 m2 s2">
+
                <a href="#Adhesion_Assay" class="blue-text waves-effect waves-light">Adhesion Assay</a>
+
 
             </li>
 
             </li>
 
             <li class="tab col l2 m2 s2">
 
             <li class="tab col l2 m2 s2">
 
                 <a href="#Parts" class="blue-text waves-effect waves-light">Parts</a>
 
                 <a href="#Parts" class="blue-text waves-effect waves-light">Parts</a>
 
             </li>
 
             </li>
 +
 
         </ul>
 
         </ul>
 
     </div>
 
     </div>
Line 31: Line 24:
 
     <li><a href="https://2015.igem.org/Team:USTC" class="waves-effect waves-light">Home</a></li>
 
     <li><a href="https://2015.igem.org/Team:USTC" class="waves-effect waves-light">Home</a></li>
 
     <li><a href="https://2015.igem.org/Team:USTC/Description" class="waves-effect waves-light">Project</a></li>
 
     <li><a href="https://2015.igem.org/Team:USTC/Description" class="waves-effect waves-light">Project</a></li>
    <li><a href="https://2015.igem.org/Team:USTC/Modeling" class="waves-effect waves-light">Modeling</a></li>
 
 
     <li><a href="https://2015.igem.org/Team:USTC/Achievements" class="waves-effect waves-light">Achivements</a></li>
 
     <li><a href="https://2015.igem.org/Team:USTC/Achievements" class="waves-effect waves-light">Achivements</a></li>
 
     <li><a href="https://2015.igem.org/Team:USTC/Tutorials" class="waves-effect waves-light">Tutorials</a></li>
 
     <li><a href="https://2015.igem.org/Team:USTC/Tutorials" class="waves-effect waves-light">Tutorials</a></li>
Line 44: Line 36:
 
<div class="row">
 
<div class="row">
 
     <div class="col offset-m1 offset-l2 s12 m10 l8">
 
     <div class="col offset-m1 offset-l2 s12 m10 l8">
         <div id="Overview" class="row">
+
         <div id="Basic_Parts" class="row">
 
             <div class="card hoverable">
 
             <div class="card hoverable">
                 <div class="col s12">
+
                 <div class="col s12 m9">
 
                     <div class="card-content">
 
                     <div class="card-content">
                         <p>That is so amazing! We finally made NDM this year! The results page will deliver the fresh
+
                         <p>This year, we choose several parts to conduct our projects. The main functions of the
                             results from us. Our results include these sections:</p>
+
                             function we use are as follow:</p>
                         <ul>
+
                         <ol>
                             <li><p>Permeability Improvement: In this section, we will demonstrate our synthetic
+
                             <li>Promoters.</li>
                                 bioloical base constrcuction, characterization of permeability improvement. This is the
+
                            <li>Proteins to improve the bactial permeability.</li>
                                 fundation of CACCI construction, as well as NDM.</p>
+
                            <li>Porins.</li>
                             </li>
+
                            <li>Proteins to improve the mobile of bacteria.</li>
                             <li><p>Chemotaxis Modification: This section introduces results of chemotaxis
+
                            <li>Sense system.</li>
                                 engineering.</p>
+
                        </ol>
                             </li>
+
                        <table class="striped">
                             <li><p>Adhesion Assay: This section explicitly explain adhesion methods, adhesion dynamics
+
                            <thead>
                                 and adhesion protocols recommended for all users, which is an important part of our
+
                            <tr>
                                 results.</p>
+
                                <th>Code Name</th>
                             </li>
+
                                <th>Part Name</th>
                             <li><p>Antibiotics Concentration Detection Demo: This section includes our initial test on
+
                                <th>Function</th>
                                 our system, how we define our final methods and how we establshed protocols for
+
                            </tr>
                                 users.</p>
+
                            </thead>
                             </li>
+
                            <tbody>
                             <li><p>Calibration</p>
+
                            <tr>
                            </li>
+
                                <td><a href="http://parts.igem.org/Part:BBa_K1593207">BBa_K1593207</a></td>
                        </ul>
+
                                 <td>micF</td>
                        <p>Want to get them now? Click their title directly!</p>
+
                                <td>Promoter sensing sulfoamid</td>
 +
                            </tr>
 +
                            <tr>
 +
                                <td><a href="http://parts.igem.org/Part:BBa_K1593208">BBa_K1593208</a></td>
 +
                                <td>SoxS</td>
 +
                                <td>Promoter sensing tetracycline</td>
 +
                            </tr>
 +
                            <tr>
 +
                                <td><a href="http://parts.igem.org/Part:BBa_K1593209">BBa_K1593209</a></td>
 +
                                <td>OprF</td>
 +
                                <td>The major porin of Pseudomonas aeruginosa allowing diffusion of polysaccharides in a
 +
                                    range of 2000 to 3000 Da.
 +
                                </td>
 +
                            </tr>
 +
                            <tr>
 +
                                <td><a href="http://parts.igem.org/Part:BBa_K1593666">BBa_K1593666</a></td>
 +
                                <td>SCVE</td>
 +
                                <td>SARS Coronavirus Envelope Protein, improving the bactial permeability.</td>
 +
                            </tr>
 +
                            <tr>
 +
                                <td><a href="http://parts.igem.org/Part:BBa_K1593998">BBa_K1593998</a></td>
 +
                                <td>cheZ</td>
 +
                                <td>Chemotactic protein. When it is overexpressed, the mobility of bacteria will be
 +
                                    improved.
 +
                                 </td>
 +
                            </tr>
 +
                            <tr>
 +
                                <td><a href="http://parts.igem.org/Part:BBa_K1593667">BBa_K1593667</a></td>
 +
                                <td>T7-RBS-SCVE</td>
 +
                                <td>Circuit containing strong expression of SCVE regulated by T7, which will
 +
                                    significantly improve bacterial permeability.
 +
                                </td>
 +
                             </tr>
 +
                             <tr>
 +
                                <td><a href="http://parts.igem.org/Part:BBa_K1593210">BBa_K1593210</a></td>
 +
                                 <td>T7-RBS-OprF</td>
 +
                                <td>Using T7 strong promoter to express OprF, derived from Pseudomonus areuginosa, would
 +
                                    strongly improve the bacterial permeability.
 +
                                </td>
 +
                             </tr>
 +
                             <tr>
 +
                                <td><a href="http://parts.igem.org/Part:BBa_K1593997">BBa_K1593997</a></td>
 +
                                 <td>R0010-RBS-cheZ</td>
 +
                                 <td>Used to coding a chemotactci protein, cheZ, downstream of lac promotor.</td>
 +
                             </tr>
 +
                             <tr>
 +
                                <td><a href="http://parts.igem.org/Part:BBa_K1593211">BBa_K1593211</a></td>
 +
                                 <td>micF-RBS-GFP</td>
 +
                                 <td>A basic part on antibiotic substance sensing-reporting system.</td>
 +
                             </tr>
 +
                             <tr>
 +
                                <td><a href="http://parts.igem.org/Part:BBa_K1593001">BBa_K1593001</a></td>
 +
                                <td>COMPX</td>
 +
                                <td>Express an outmembrane protein with a point mutation</td>
 +
                            </tr>
 +
                            </tbody>
 +
                        </table>
  
 
                     </div>
 
                     </div>
Line 78: Line 126:
  
  
         <div id="Chemotaxis_Modification" class="row">
+
         <div id="Composite_Parts" class="row">
 
             <div class="card hoverable">
 
             <div class="card hoverable">
                 <div class="row">
+
                 <div class="col s12 m9">
                     <div class="col s12">
+
                     <div class="card-content">
                         <div class="card-content">
+
                         <p>A list of composit parts USTC iGEM 2015 have submitted to the Registry.The main functions of
                             <p><strong>Growth characteristics</strong><br>We detected OD600(nm) to identify the effect
+
                            these composite parts are as following:</p>
                                 of cheZ expression on <em>E. coli</em> through time.<br><img
+
                        <ol>
                                        src="https://static.igem.org/mediawiki/2015/d/d6/Ustc-growth.png" alt="图片名称"></p>
+
                            <li>To improve the permeability of bacteria;</li>
 +
                            <li>To modify the chemotaxis of bacteria;</li>
 +
                            <li>To modify outmembrane protein;</li>
 +
                            <li>To test the response of promtor.</li>
 +
                        </ol>
 +
                        <table class="striped">
 +
                             <thead>
 +
                            <tr>
 +
                                <th>Code Name</th>
 +
                                <th>Parts Name</th>
 +
                                <th>Type</th>
 +
                                <th>Function</th>
 +
                            </tr>
 +
                            </thead>
 +
                            <tbody>
 +
                            <tr>
 +
                                <td><a href="http://parts.igem.org/Part:BBa_K1593667">BBa_K1593667</a></td>
 +
                                <td>T7-RBS-SCVE</td>
 +
                                <td>Translational_Unit</td>
 +
                                <td>overexpress SCVE to improve the permeability of bacterial</td>
 +
                            </tr>
 +
                            <tr>
 +
                                 <td><a href="http://parts.igem.org/Part:BBa_K1593210">BBa_K1593210</a></td>
 +
                                <td>T7-RBS-OprF</td>
 +
                                <td>Coding</td>
 +
                                <td>overexpress OprF to improve the permeability of bacterial</td>
 +
                            </tr>
 +
                            <tr>
 +
                                <td><a href="http://parts.igem.org/Part:BBa_K1593997">BBa_K1593997</a></td>
 +
                                <td>R0010-RBS-cheZ</td>
 +
                                <td>Coding</td>
 +
                                <td>overexpress cheZ under the control of lac to improve the chemotaxis of bacterial
 +
                                </td>
 +
                            </tr>
 +
                            <tr>
 +
                                <td><a href="http://parts.igem.org/Part:BBa_K1593211">BBa_K1593211</a></td>
 +
                                <td>micF-RBS-GFP</td>
 +
                                <td>Translational_Unit</td>
 +
                                <td>test the response of micF to antibiotics using the GFP report system</td>
 +
                            </tr>
 +
                            <tr>
 +
                                <td>
 +
                                    <a href="http://parts.igem.org/cgi/partsdb/part_info.cgi?part_id=38524">BBa_K1593888</a>
 +
                                </td>
 +
                                <td>tRNA&amp;tRNA Synthetase</td>
 +
                                <td>Translational_Unit</td>
 +
                                <td>express a rare amino acid,pAzF</td>
 +
                            </tr>
 +
                            <tr>
 +
                                <td><a href="http://parts.igem.org/Part:BBa_K1593002">BBa_K1593002</a></td>
 +
                                <td>tRNA complex with Compx</td>
 +
                                <td>Device</td>
 +
                                <td>orthogonal system to express Compx</td>
 +
                            </tr>
 +
                            <tr>
 +
                                <td><a href="http://parts.igem.org/Part:BBa_K1593000">BBa_K1593000</a></td>
 +
                                <td>lac-compx with RFP</td>
 +
                                <td>Device</td>
 +
                                <td>overexpress compx and detect its quantity by GFP</td>
 +
                            </tr>
 +
                            </tbody>
 +
                        </table>
  
                            <p>The exogenous protein expression affects the growth of bacteria, which was indicated by
 
                                slight slower grow-up in <em>E. coli</em> containing cheZ plasmid. In total, cheZ
 
                                doesn't have obvious negative impact on bacteria grown. </p>
 
 
                            <p><strong>SDS-PAGE</strong><br>After induced by IPTG in 1mM about 4 h, cheZ was found in
 
                                SDS-PAGE gel, compared to the wild type (Top10) and bacteria without IPTG induction.
 
                                Through this result, we concluded that cheZ has been successfully expressed with the
 
                                IPTG induction.<br><img
 
                                        src="https://static.igem.org/mediawiki/2015/7/72/Ustc-chez_expression.png" alt="图片名称"><br>See
 
                                protocol in <a href="http://tower.im">Protocols: SDS-PAGE</a></p>
 
                        </div>
 
 
                     </div>
 
                     </div>
 
                 </div>
 
                 </div>
            </div>
 
        </div>
 
  
        <div id="Permeability_Improvement" class="row">
 
            <div class="card hoverable">
 
                <div class="row">
 
                    <div class="col s12 m9">
 
                        <div class="card-content">
 
                            <h4 id="Extraction_of_Permeability_Improvement_Fragements" class="scrollspy">Extraction of
 
                                Permeability Improvement Fragements</h4>
 
 
                            <p>We successfully get
 
                                gene fragements that are used for improving bacterial permeability, which including,
 
                            </p>
 
                            <ul>
 
                                <li>SCVE, a viroporin originally from SARS virus, is synthesized by Sangon Co. ctd.</li>
 
                            </ul>
 
                            <p><img src="https://static.igem.org/mediawiki/2015/1/1d/Ustc-scve.jpeg"
 
                                    alt="Figure 1: Extraction of SCVE fragement"></p>
 
                            <ul>
 
                                <li>OprF, a bigger porin compared with OmpF in <em>E. coli</em>, is extracted from <em>P.aeruginosa,
 
                                    PAO1</em> genome by PCR.
 
                                </li>
 
                            </ul>
 
                            <p><img src="https://static.igem.org/mediawiki/2015/6/6d/Ustc-t7oprf_lac-chez.jpeg"
 
                                    alt="Figure 2: Extraction of OprF fragement"></p>
 
                            <ul>
 
                                <li><p>T7 is a strong promoter which we got form Parts Registry. T7 will be used to
 
                                    trigger the expression of both OprF and SCVE.<br><img
 
                                            src="https://static.igem.org/mediawiki/2015/7/7a/Ustc-T7.jpeg"
 
                                            alt="Figure 3: T7 extraction from parts"></p>
 
                                </li>
 
                                <li><p>Cas9 is got from 2015 Part Distribution.</p>
 
                                </li>
 
                            </ul>
 
                            <p><img src="https://static.igem.org/mediawiki/2015/1/1c/USTC-Cas9.png"
 
                                    alt="Figure 4: Extraction of Cas9 from parts"></p>
 
                            <ul>
 
                                <li>gRNA-AcrB and gRNA-EmrE, these two fragments are for silencing bacterial
 
                                    transmembrane protein AcrB and EmrE to strongly block drug efflux system. These two
 
                                    parts are synthesized by Sangon Biotech Company.
 
                                </li>
 
                            </ul>
 
                            <p><img src="https://static.igem.org/mediawiki/2015/5/54/USTC-gRNA_extraction.png"
 
                                    alt="Figure 5: Extraction of gRNA-AceB and gRNA-EmrE, two fragments are synthesized by Sangon Biotech Company">
 
                            </p>
 
 
                            <h4 id="Construction_of_Permeability_Improving_Plasmid" class="scrollspy">Construction of
 
                                Permeability Improving Plasmid</h4>
 
                            <ul>
 
                                <li>Construction of plasimid with T7-SCVE (<a
 
                                        href="http://parts.igem.org/Part:BBa_K1593667">BBa_K1593667</a>) . We finally
 
                                    ligated the T7 with SCVE and got T7-SCVE (<a
 
                                            href="http://parts.igem.org/Part:BBa_K1593667">BBa_K1593667</a>).
 
                                </li>
 
                            </ul>
 
                            <p><img src="https://static.igem.org/mediawiki/2015/e/ed/Ustc-scve_jp_t7.jpeg"
 
                                    alt="Figure 6: Construction of T7-SCVE ([BBa_K1593667](http://parts.igem.org/Part:BBa_K1593667))">
 
                            </p>
 
                            <ul>
 
                                <li>Construction of plasimid containing T7-OprF (<a
 
                                        href="http://parts.igem.org/Part:BBa_K1593210">BBa_K1593210</a>). This is the
 
                                    result of T7 with OprF.
 
                                </li>
 
                            </ul>
 
                            <p><img src="https://static.igem.org/mediawiki/2015/6/6d/Ustc-t7oprf_lac-chez.jpeg"
 
                                    alt="Figure 7: Construction of T7-OprF ([BBa_K1593210](http://parts.igem.org/Part:BBa_K1593210))">
 
                            </p>
 
 
                            <h4 id="Growth_Characterization" class="scrollspy">Growth Characterization</h4>
 
 
                            <p>We firstly characterized the growth rate of genetically modified CACCI along with wild
 
                                type BL21 using optical density at 600 nm, which is called OD 600, in order to
 
                                demonstrate that the overexpression of porin(OprF with T7,<a href="http://tower.im">BBa_K1593209</a>)
 
                                or viroporin(SCVE with T7, (<a href="http://parts.igem.org/Part:BBa_K1593667">BBa_K1593667</a>)
 
                                won't severely affect the growth of bacteria, at least it won't significantly inhibit
 
                                bacteria growth and become a kill switch.</p>
 
 
                            <p>All bacteria are cultured previously in LB medium about 12 h. And then the measurement of
 
                                bacteria growth through time began at 8 A.M. the other day.</p>
 
 
                            <p><img src="https://static.igem.org/mediawiki/2015/d/d8/Ustc-growth2.png"
 
                                    alt="Figure 8: Bacteria growth characterization"></p>
 
 
                            <p>As the images above illustrated, we found <em>E. coli</em> BL21 wild type has the best
 
                                growth characteristics with a maximal OD600=3.427. Whereas <em>E. coli</em> BL21 with
 
                                OprF (<a href="http://parts.igem.org/Part:BBa_K1593210">BBa_K1593210</a>) has a
 
                                relatively low optical density as its OD600 after 12 h is 2.808 compared to the
 
                                wildtype. In the same way, characterization of <em>E. coli</em> BL21 with SCVE, <a
 
                                        href="http://parts.igem.org/Part:BBa_K1593667">http://parts.igem.org/Part:BBa_K1593667</a>
 
                                showed a slightly smaller OD600, as its finally turned to 2.835. <em>E. coli</em> BL21
 
                                with T7-OprF (<a href="http://parts.igem.org/Part:BBa_K1593210">BBa_K1593210</a>) and
 
                                <em>E. coli</em> BL21 with T7-SCVE, (<a href="http://parts.igem.org/Part:BBa_K1593667">BBa_K1593667</a>)
 
                                are showing 19% decreased maximal cell density and 18.5% decreased maximal cell density
 
                                respectively in comparison with wild type.</p>
 
 
                            <p>Consequently, the result implies that the genetical modification on bacterial
 
                                permeability, at least the overexpression of OprF and SCVE with a strong promoter T7,
 
                                won't significantly influence the bacterial growth. Thus, genetically modified bacteria
 
                                can be used in the following experiments.</p>
 
 
                            <p>Later on, we will characterize the basic permeability capability of <em>E. coli</em> BL21
 
                                with T7-OprF (<a href="http://parts.igem.org/Part:BBa_K1593210">BBa_K1593210</a>) and
 
                                <em>E. coli</em> BL21 with T7-SCVE, (<a href="http://parts.igem.org/Part:BBa_K1593667">BBa_K1593667</a>).
 
                            </p>
 
 
                            <h4 id="ONPG_Assay" class="scrollspy">ONPG Assay</h4>
 
 
                            <p><img src="https://static.igem.org/mediawiki/2015/5/54/ONPG-ustc-sche.png"
 
                                    alt="Figure 9: ONPG reaction"></p>
 
 
                            <p>ONPG, that is the abbreviation of ortho-Nitrophenyl-β-galactoside. ONPG is a colorimetric
 
                                and spectrophotometric substrate, previously used for detecting β-galactosidase
 
                                activity. ONPG is actually colorless at normal situation, however if it triggers the
 
                                degradation reaction catalyzed by β-galactosidase, we will get galactose and
 
                                ortho-nitrophenol. Surprisingly, the compound ortho-nitrophenol has a yellow color,
 
                                which means we are able to detect the chemical reaction through OD detection. Besides,
 
                                owing to the existence of β-galactosidase in bacteria, a more intense optical density we
 
                                detected, that means there are more ONPG uptaked by bacteria. Therefore, using ONPG we
 
                                are able to distinguish the permeability capability of different bacteria.</p>
 
 
                            <p>Here's our result.</p>
 
 
                            <p>Note: The wavelength for detecting the bacterial concentration and absortion of ONPG are
 
                                respectively 600nm and 406nm.</p>
 
 
                            <p>First, we detected the bacterial solutions to control the initial concentrations. </p>
 
 
                            <p><img src="https://static.igem.org/mediawiki/2015/3/32/Ustc-board.png"
 
                                    alt="Figure 10: ONPG assay schematic show"></p>
 
 
                            <p>The OD values for <em>E.coli </em>BL21, <em>E.coli </em>BL21 with T7-OprF (<a
 
                                    href="http://parts.igem.org/Part:BBa_K1593210">BBa_K1593210</a>) , <em>E.coli</em>
 
                                BL21 with T7-SCVE(<a href="http://parts.igem.org/Part:BBa_K1593667">BBa_K1593667</a>)
 
                                are respectively 2.856,1.806 and 1.889. Based on these, we know that the concentrations
 
                                of these three bacteria are close.</p>
 
 
                            <p>Then we add ONPG to the bacterial solutions and detect the OD.</p>
 
 
                            <p><img src="https://static.igem.org/mediawiki/2015/5/52/Ustc-onpg88.png"
 
                                    alt="Figure 11: ONPG assay, absorption OD406"></p>
 
 
                            <p>From this figure, we can see a rising trend in all bacterial solutions. The OD values for
 
                                <em>E.coli</em> BL21 with T7-OprF(<a href="http://parts.igem.org/Part:BBa_K1593210">BBa_K1593210</a>)
 
                                and <em>E.coli </em>BL21 with T7-SCVE(<a href="http://parts.igem.org/Part:BBa_K1593667">BBa_K1593667</a>)
 
                                are respectively 0.2520 and 0.2588,both are higher than <em>E.coli</em> BL21,the wild
 
                                type. We can infer that the absorbtion of modified bacteria is higher than the wild
 
                                type.</p>
 
 
                            <p>There is a more visual figure for comparing the absorbtions. We made a zero calibration
 
                                using the OD value of wild type as the zero level.</p>
 
 
                            <p><img src="https://static.igem.org/mediawiki/2015/0/00/Ustc-onpg55.png"
 
                                    alt="Figure 12: ONPG assay, absorption OD406 in average"></p>
 
 
                            <p>In general, the OD values of both two modified bacteria are rising. For<em> E.coli</em>
 
                                BL21 with T7-OprF(<a href="http://parts.igem.org/Part:BBa_K1593210">BBa_K1593210</a>),
 
                                the rising is relatively smooth. For <em>E.coli</em> BL21 with T7-SCVE(<a
 
                                        href="http://parts.igem.org/Part:BBa_K1593667">BBa_K1593667</a>),the value goes
 
                                down first, then goes up .And the <em>E.coli</em> BL21 with T7-SCVE(<a
 
                                        href="http://parts.igem.org/Part:BBa_K1593667">BBa_K1593667</a>) has a higher
 
                                absorbtion than <em>E.coli </em>BL21 with T7-OprF(<a
 
                                        href="http://parts.igem.org/Part:BBa_K1593210">BBa_K1593210</a>).</p>
 
 
                            <h4 id="NPN_Assay" class="scrollspy">NPN Assay</h4>
 
 
                            <p><img
 
                                    src="https://static.igem.org/mediawiki/2015/1/16/Ustc-npn.gif"
 
                                    alt="Figure 13: Schematic Structure of N-Phenyl-1-naphthylamine, NPN"></p>
 
 
                            <p>N-Phenyl-1-naphthylamine(NPN),C16H13N, CAS:90-30-2, FW: 219.29, is a nonpolar probe,
 
                                whose fluorescence signal is relatively strong in a phospholipid environment, but weak
 
                                in aqueous surroundings. Consequently, using this feature, we are able to characterize
 
                                bacteria permeability by measuring the fluorescence intensity of the bacteria solution.
 
                                When NPN molecules are absorbed by bacteria, we will observe a significantly rising
 
                                fluorescence intensity. The more fluorescence intensity we got, the more permeable the
 
                                bacteria are. Here are what we got from NPN uptake assay and the conclusion on
 
                                genetically engineered bacteria permeability improvement. </p>
 
 
                            <p>Here's our results, the first picture illustrate the total fluorescence intensity
 
                                measurement by <a href="http://www.bmglabtech.com/en/products/clariostar/">BMG Labtech
 
                                    CLARIOstar®</a>.</p>
 
 
                            <p><em>Note</em>: The fluorescence intensity signal at excitation wavelength range is 305nm
 
                                to 335nm and emission wavelength range is 370nm to 410nm, which is recommended by
 
                                previous research. </p>
 
 
                            <p><img src="https://static.igem.org/mediawiki/2015/e/e5/Ustc-npn1.png"
 
                                    alt="Figure 14: NPN uptake result-1"></p>
 
 
                            <p>The total fluorescence intensity of <em>E. coli</em> BL21 wild type is 126451. On the
 
                                other hand, the fluorescence intensity in <em>E. coli</em> BL21 with T7-OprF (<a
 
                                        href="http://parts.igem.org/Part:BBa_K1593210">BBa_K1593210</a>) and <em>E.
 
                                    coli</em> BL21 with T7-SCVE, (<a href="http://parts.igem.org/Part:BBa_K1593667">BBa_K1593667</a>)
 
                                are respectively 207322 and 151820, which are significantly larger than the wildtype
 
                                assay.</p>
 
 
                            <p>Though we have already got the exact data on NPN uptake, we still need to revise its
 
                                effectiveness because of the different bacteria concentration of <em>E. coli</em> BL21
 
                                wild type, <em>E. coli</em> BL21 with T7-OprF (<a
 
                                        href="http://parts.igem.org/Part:BBa_K1593210">BBa_K1593210</a>) and <em>E.
 
                                    coli</em> BL21 with T7-SCVE, (<a href="http://parts.igem.org/Part:BBa_K1593667">BBa_K1593667</a>).
 
                                Here is the exact bacteria concentration data, based on OD600nm,</p>
 
                            <table>
 
                                <thead>
 
                                <tr>
 
                                    <th>Strain</th>
 
                                    <th>OD600nm</th>
 
                                </tr>
 
                                </thead>
 
                                <tbody>
 
                                <tr>
 
                                    <td><em>E. coli</em> BL21 wild type</td>
 
                                    <td>3.663</td>
 
                                </tr>
 
                                <tr>
 
                                    <td><em>E. coli</em> BL21 with T7-OprF (<a
 
                                            href="http://parts.igem.org/Part:BBa_K1593210">BBa_K1593210</a>)
 
                                    </td>
 
                                    <td>2.431</td>
 
                                </tr>
 
                                <tr>
 
                                    <td><em>E. coli</em> BL21 with T7-SCVE, (<a
 
                                            href="http://parts.igem.org/Part:BBa_K1593667">BBa_K1593667</a>)
 
                                    </td>
 
                                    <td>2.441</td>
 
                                </tr>
 
                                </tbody>
 
                            </table>
 
                            <p>After correcting these data, we are able to get bacteria absorption uptake capability in
 
                                average, which is a more accurate value to characterize bacterial permeability
 
                                property.</p>
 
 
                            <p><img src="https://static.igem.org/mediawiki/2015/1/1a/Ustc-npn2.png"
 
                                    alt="Figure 15: NPN uptake result in average "></p>
 
 
                            <p>The fluorescence intensity in average of <em>E. coli</em> BL21 wild type is 34521.16. On
 
                                the contrary, the fluorescence intensity revised by bacterial concentration in <em>E.
 
                                    coli</em> BL21 with T7-OprF (<a href="http://parts.igem.org/Part:BBa_K1593210">BBa_K1593210</a>)
 
                                and <em>E. coli</em> BL21 with T7-SCVE, (<a
 
                                        href="http://parts.igem.org/Part:BBa_K1593667">BBa_K1593667</a>) are
 
                                respectively 85282.60 and 62195.8, which are relatively 2.5 folds and approximately 2
 
                                folds to <em>E. coli</em> wild type, that is a significantly improvement compared to
 
                                wild type.</p>
 
 
                            <p>Consequently, through NPN uptake assay, we are able to conclude that the small molecule
 
                                uptake capability of bacteria improved after our genetical modification. Thus <em>E.
 
                                    coli</em> BL21 with T7-OprF (<a href="http://parts.igem.org/Part:BBa_K1593210">BBa_K1593210</a>)
 
                                and <em>E. coli</em> BL21 with T7-SCVE, (<a
 
                                        href="http://parts.igem.org/Part:BBa_K1593667">BBa_K1593667</a>) are both able
 
                                to use as the candidate bacteria strains for NDM measurement.</p>
 
 
                            <h4 id="bibliography" class="scrollspy">Bibliography</h4>
 
                            <ol>
 
                                <li><p><em>T. Mattila-Sandholm et al.</em> Fluorometric assessment of Gram-negative
 
                                    bacterial permeabilization. <strong>Journal of Applied Microbiology</strong> 2000,
 
                                    88, 213–219</p>
 
                                </li>
 
                                <li><p><em>Scott Banta et al.</em> Genetic Manipulation of Outer Membrane Permeability:
 
                                    Generating Porous Heterogeneous Catalyst Analogs in <em>Escherichia coli</em>
 
                                    dx.doi.org/10.1021/sb400202s <strong>ACS Synth. Biol.</strong> 2014, 3, 848−854</p>
 
                                </li>
 
                            </ol>
 
 
                        </div>
 
                    </div>
 
                    <div class="col hide-on-small-only m3">
 
                        <div class="toc-wrapper pinned">
 
                            <ul class="section table-of-contents">
 
                                <li>
 
                                    <a href="#Extraction_of_Permeability_Improvement_Fragements">Extraction of
 
                                        Permeability Improvement Fragement</a>
 
                                </li>
 
                                <div class="divider"></div>
 
                                <li>
 
                                    <a href="#Construction_of_Permeability_Improving_Plasmid">Construction of
 
                                        Permeability Improving Plasmid</a>
 
                                </li>
 
                                <div class="divider"></div>
 
                                <li>
 
                                    <a href="#Growth_Characterization">Growth Characterization</a>
 
                                </li>
 
                                <div class="divider"></div>
 
                                <li>
 
                                    <a href="#ONPG_Assay">ONPG Assay</a>
 
 
                                    <div class="divider"></div>
 
                                <li>
 
                                    <a href="#NPN_Assay">NPN Assa</a>
 
 
                                    <div class="divider"></div>
 
                                <li>
 
                                    <a href="#bibliography">Bibliography</a>
 
                                </li>
 
                            </ul>
 
                        </div>
 
                    </div>
 
                </div>
 
 
             </div>
 
             </div>
 
         </div>
 
         </div>
 
        <div id="Adhesion_Assay" class="row">
 
            <div class="card hoverable">
 
                <div class="col s12 m9">
 
                    <div class="card-content">
 
                        <h3 id="characterization-of-optimal-conditions-on-polylysine-pll-coated-assay" class="scrollspy">
 
                            Characterization of Optimal Conditions on Polylysine(PLL) Coated Assay</h3>
 
 
                            <p>To see the details on the mechanism of polylysine adhesion, please refer to <a
 
                                    href="http://tower.im">Adhesion: Polylysine</a>.</p>
 
 
                            <p>To get the final PLL-coated protocol, check <a href="http://tower.im">Protocols: PLL
 
                                Coated Assay</a> for further information.</p>
 
 
                            <p>Our original characterization of optimal conditions on polylysine(PLL)-coated assay
 
                                requires several factors to get, including:</p>
 
                            <ol>
 
                                <li>Best bacterial developmental interval along with recommended dilution conditions.
 
                                </li>
 
                                <li>Best PLL-Coated Concentration and Pre-treatment Time.</li>
 
                                <li>Best PLL-Coated Time, given full consideration to the completion of bacterial
 
                                    adhesion time.
 
                                </li>
 
                                <li>Best Measurement Interval, which illustrates the possible time for bacterial
 
                                    response on antibiotics pressure.
 
                                </li>
 
                                <li>Possible Determination Interval, which refers to antibiotics response interval.</li>
 
                            </ol>
 
                            <p>Here we present all the optimistic conditions for users to get the effective results on
 
                                antibiotics using our CACCI and SPRING.</p>
 
 
                            <h3 id="Best_Bacterial_Developmental_Interval_Along_with_Recommended_Dilution_Conditions" class="scrollspy">Best Bacterial Developmental Interval Along with Recommended Dilution
 
                                Conditions</h3>
 
 
                            <p>According to experience on <em>E. coli</em> development based on OD detector. We
 
                                concluded that bacteria exploding during <strong>Logarithmic Period(OD:535nm about
 
                                    0.4~0.5)</strong> are at the most energetic moments with proper bacterial density.
 
                                Consequently, we highly recommend user to culture bacteria at Logarithmic Period and
 
                                then <strong>dilute bacterial solution about twenty times to fifty times.</strong></p>
 
 
                            <h3 id="Best_PLL-Coated_Concentration_and_Pre-treatment_Time" class="scrollspy">Best PLL-Coated Concentration and Pre-treatment Time.</h3>
 
 
                            <p>Best PLL-Coated Conditions, which include PLL-Pretreatment time, PLL-Coated concentration
 
                                and PLL-Coated time are measured for best adhesive condictions for bacterial
 
                                treatment.</p>
 
 
                            <p>As for PLL-Pretreatment time, we adopt traditional pretreatment time, incubating about
 
                                12~16 h, for recommendation, which is originally used for neurons coated on neural
 
                                science research. And when it comes to PLL-coated concentration, experience on neurons
 
                                adhesion is also precious. According to previous research, PLL concentration in the
 
                                interval of 20 ug/mL to 100 ug/mL is quite effective for bacterial adhesion.</p>
 
 
                            <h3 id="Adhesion_Assay_with_PLL_treatment" class="scrollspy">Adhesion Assay with PLL treatment</h3>
 
                            <p>Here we deliver the PLL treatment
 
                                results comparing with no PLL treatment assay. During pre-experiment adhesion assay,
 
                                PAO1, a strain of <em>Pseudomonas aeruginosa</em>, is used for adhesion effects. </p>
 
 
                            <p>The picture below showed the amount of bacteria(PAO1) under microscope without PLL
 
                                treatment, which is abbreviated as PLL(-). To observe capability of bacterial adhesion,
 
                                we wash observed place with PBS:</p>
 
 
                            <p><img src="https://static.igem.org/mediawiki/2015/c/c3/Control_-1.png"
 
                                    alt="Figure 1: Control Assay-Without PLL treatment"></p>
 
 
                            <p>After elution, a significant decline in the number of bacteria is recorded. As a matter
 
                                of fact, there is no bacteria in observed field after PBS washing. </p>
 
 
                            <p><em>To get the algorithm of bacterial counting, please refer to <a
 
                                    href="http://tower.im">Modeling: Bacterial number and movement analysis</a></em>.
 
                            </p>
 
 
                            <p><img src="https://static.igem.org/mediawiki/2015/e/e9/PAO1-PLL--.png"
 
                                    alt="Figure 2: Control Assay-Without PLL treatment2"></p>
 
 
                            <p>As for treatment with PLL in 20 ug/mL, which is abbreviated as PLL(+,20), the impressive
 
                                adhesion effect is observed. To ensure the exact effect, bacteria observing field is
 
                                washed twice by PBS.</p>
 
 
                            <p><img src="https://static.igem.org/mediawiki/2015/9/96/Adhesion_Assay.png"
 
                                    alt="Figure 3: Adhesion Assay-With PLL treatment in 20 ug/mL"></p>
 
 
                            <p>The number of bacteria doesn't decline, and on the contrary, we see slight increase of
 
                                bacteria number. The possible reason is constant bacterial settlement during adhesion
 
                                assay. After twice PBS wash, the number of bacteria is relatively stable as well.
 
                                Consequently, we concluded PLL has significant adhesive ability on bacteria.</p>
 
 
                            <p><img src="https://static.igem.org/mediawiki/2015/9/9e/PAO-Withoug.png"
 
                                    alt="Figure 4: Adhesion Assay-With PLL treatment in 20 ug/mL"></p>
 
 
                            <h3 id="Best_PLL-Coated_Time" class="scrollspy">Best PLL-Coated Time</h3>
 
                            <p>Then, we tried to figure out the cohesive effect
 
                                of polylysine through time to get the best PLL-coated time. We gathered data just after
 
                                PLL treatment(0s), after 1min and after 5min. And we also recorded bacteria number in
 
                                the following 20 s. Here we provide the analysis of bacterial number variation after PLL
 
                                treatment.We respectively use PAO1, a kind of <em>Pseudomonas aeruginosa</em> and HCB1,
 
                                a kind of <em>E. coli</em> to handle the assay. PAO1 contains self-adhesive ability and
 
                                HCB1 has strong mobile ability. Using these genetically natural bacteria, we would
 
                                conclude with the effect of polylysine treatment.</p>
 
 
                            <p><em>As for PAO1</em>, Without polylysine coated, bacteria have strong swimming ability.
 
                                Because PAO1 is a kind of self-adhesive bacteria for experiment, thus we could see
 
                                adhesive bacteria increasing during assay.</p>
 
 
                            <p><img src="https://static.igem.org/mediawiki/2015/5/5c/Ustc-2015-pll90.png"
 
                                    alt="Figure 5: no antibiotics bacterial number variation through time without PLL">
 
                            </p>
 
 
                            <p>With 20 ug/mL polylysine treatement, bacterial adhesive effect due to strong
 
                                electrostatic adhesion becomes stronger, and we, as well are able to observe the number
 
                                of adherent bacteria gradually rising until reaching equilibrium. </p>
 
 
                            <p><img src="https://static.igem.org/mediawiki/2015/e/ee/Developemnt.png"
 
                                    alt="Figure 6: no antibiotics bacterial number variation through time with PLL"></p>
 
 
                            <p>After mathematical simulation we found that the adhesion rate of PAO1 by polylysine after
 
                                treatment of PLL is increased, while for E. coli, the adhesion quantity rise, not
 
                                fall.</p>
 
 
                            <p><img src="https://static.igem.org/mediawiki/2015/0/0d/USTC-PAO1.png" alt="图片名称"></p>
 
 
                            <p><em>As for HCB1</em>, a kind of <em>E. coli</em> and the number of bacteria inside
 
                                observed field is stable and relatively declined because of its lack of capability of
 
                                adhesion.<br><img src="https://static.igem.org/mediawiki/2015/6/6f/Development22.png"
 
                                                  alt="图片名称"></p>
 
 
                            <p>After treated with 20ug/mL polylysine, adhesive bacteria number obviously
 
                                increased:<br><img src="https://static.igem.org/mediawiki/2015/9/96/4141414.png" alt="图片名称">
 
                            </p>
 
 
                            <p>Modeling on adhesion process strictly demonstrated the adhesion assay fits Langmuir
 
                                absorption isoform.</p>
 
 
                            <p><img src="https://static.igem.org/mediawiki/2015/a/a9/Ustc-bacterial_HCB1.png"
 
                                    alt="图片名称"><br><img src="https://static.igem.org/mediawiki/2015/d/d8/20150901022.png"
 
                                                        alt="图片名称"><br>Simulation result:<br><img
 
                                    src="https://static.igem.org/mediawiki/2015/8/86/20150903028.png" alt=""><br>Constants
 
                                value and details:<br><img src="https://static.igem.org/mediawiki/2015/6/66/20150903029.png"
 
                                                          alt=""></p>
 
 
                            <p>To know more about our modeling, please check <a href="http://tower.im">Modeling:
 
                                Adhesion Assay Modeling</a></p>
 
 
                            <p>This significant reverse of bacterial adhesion tendency stronly proved that polylysine
 
                                has effective adhesive ability for SPRING.</p>
 
 
                            <p>After we confirmed the feasibility of PLL treatment for bacterial adhesion, then the
 
                                treating time should be taken into consideration because only in the case of stable
 
                                adhesion is effective for SPRING to gather effective and stable data.</p>
 
 
                            <p>As the plot illustrates, bacteria number is growing at the beginning of PLL treatment
 
                                because of opening strong electrostatic adsorption derived from PLL. And after 1min, the
 
                                number of bacteria become stable, and there is nearly no difference on bacteria number
 
                                comparing after 1 min treatment to after 5 min treatment.</p>
 
 
                            <p>Consequently, we recommended that PLL treatment after 5 min would be a promising set for
 
                                SPRING to output stable data.</p>
 
 
                            <h3 id="Best_Measurement_Interval" class="scrollspy">Best Measurement Interval</h3>
 
 
                            <p>According to chemotaxis, bacteria responsing to surrounding pressure or beneficits will
 
                                be presented as change of bacteria movement. Here we analyzed bacterial movement data
 
                                treating with different antibiotics concentration, specificly, chloromycetin
 
                                concentration. And we gathered bacterial movement data just after antibiotics
 
                                treatment(0s), after 1 min treatment and after 5 min treatment, and we again recorded
 
                                all pictures in the following 18 s to get the dynamic data. Then, we concluded from the
 
                                percentage of bacterial movement as an important data to intercept the effect of
 
                                bacterial response on antibiotics.</p>
 
 
                            <p>The measurement assay is illustrated as following:</p>
 
 
                            <p><em>PLL(-)</em></p>
 
                            <table>
 
                                <thead>
 
                                <tr>
 
                                    <th>Antibiotics Concentration(ug/mL)</th>
 
                                    <th>Incubation Time(s)</th>
 
                                </tr>
 
                                </thead>
 
                                <tbody>
 
                                <tr>
 
                                    <td>0</td>
 
                                    <td>0</td>
 
                                </tr>
 
                                <tr>
 
                                    <td>0</td>
 
                                    <td>60</td>
 
                                </tr>
 
                                <tr>
 
                                    <td>0</td>
 
                                    <td>120</td>
 
                                </tr>
 
                                <tr>
 
                                    <td>0</td>
 
                                    <td>180</td>
 
                                </tr>
 
                                <tr>
 
                                    <td>0</td>
 
                                    <td>240</td>
 
                                </tr>
 
                                <tr>
 
                                    <td>0</td>
 
                                    <td>300</td>
 
                                </tr>
 
                                <tr>
 
                                    <td>1</td>
 
                                    <td>0</td>
 
                                </tr>
 
                                <tr>
 
                                    <td>1</td>
 
                                    <td>60</td>
 
                                </tr>
 
                                <tr>
 
                                    <td>1</td>
 
                                    <td>300</td>
 
                                </tr>
 
                                </tbody>
 
                            </table>
 
                            <p><em>PLL(+,20)</em></p>
 
                            <table>
 
                                <thead>
 
                                <tr>
 
                                    <th>Antibiotics Concentration(ug/mL)</th>
 
                                    <th>Incubation Time(s)</th>
 
                                </tr>
 
                                </thead>
 
                                <tbody>
 
                                <tr>
 
                                    <td>0</td>
 
                                    <td>0</td>
 
                                </tr>
 
                                <tr>
 
                                    <td>0</td>
 
                                    <td>60</td>
 
                                </tr>
 
                                <tr>
 
                                    <td>0</td>
 
                                    <td>120</td>
 
                                </tr>
 
                                <tr>
 
                                    <td>0</td>
 
                                    <td>180</td>
 
                                </tr>
 
                                <tr>
 
                                    <td>0</td>
 
                                    <td>240</td>
 
                                </tr>
 
                                <tr>
 
                                    <td>0</td>
 
                                    <td>300</td>
 
                                </tr>
 
                                <tr>
 
                                    <td>0.1</td>
 
                                    <td>0</td>
 
                                </tr>
 
                                <tr>
 
                                    <td>0.1</td>
 
                                    <td>60</td>
 
                                </tr>
 
                                <tr>
 
                                    <td>0.1</td>
 
                                    <td>300</td>
 
                                </tr>
 
                                <tr>
 
                                    <td>0.5</td>
 
                                    <td>0</td>
 
                                </tr>
 
                                <tr>
 
                                    <td>0.5</td>
 
                                    <td>60</td>
 
                                </tr>
 
                                <tr>
 
                                    <td>0.5</td>
 
                                    <td>300</td>
 
                                </tr>
 
                                <tr>
 
                                    <td>1</td>
 
                                    <td>0</td>
 
                                </tr>
 
                                <tr>
 
                                    <td>1</td>
 
                                    <td>60</td>
 
                                </tr>
 
                                <tr>
 
                                    <td>1</td>
 
                                    <td>300</td>
 
                                </tr>
 
                                </tbody>
 
                            </table>
 
                            <p>When bacteria are treated with PLL, the movement of bacteria is been limited for strong
 
                                adhesion, after 5 min treatment, the proportion of movement decreased through
 
                                time.<br><img src="https://static.igem.org/mediawiki/2015/9/9b/-ustc-nosd.png" alt="图片名称"></p>
 
 
                            <p>However, when bacteria are not treated with PLL, incubated in 1ug/mL chloromycetin
 
                                solution, we got the movement percentage of bacteria as following:</p>
 
 
                            <p><img src="https://static.igem.org/mediawiki/2015/c/ca/Results-0.png" alt="图片名称"></p>
 
 
                            <p>The amount of moving bacteria is relatively increasing after 5 min antibiotics treatment.
 
                                Bacause of no PLL treatment, we could see the relative increase of bacteria movement
 
                                percentage.</p>
 
 
                            <p>As for bacteria treated with 20 ug/mL PLL, different pattern is observed:</p>
 
 
                            <p>This is the bacterial movement percentage variation with time, treated with 0.1 ug/mL
 
                                chloromycetin solution. Antibiotics pressure is not that strong, consequently, the
 
                                movement of bacteria is not ignited significantly.</p>
 
 
                            <p><img src="https://static.igem.org/mediawiki/2015/b/b0/Results-1.png" alt="图片名称"></p>
 
 
                            <p>When it comes to 0.5 ug/mL chloromycetin solution, the proportion of the moving bacteria
 
                                is increased. And as a matter of fact, the increase is quite corresponding through time,
 
                                reflecting bacteria impressive response on antibiotics substance.<br><img
 
                                        src="https://static.igem.org/mediawiki/2015/3/32/Ustc-2015-results-2.png" alt="图片名称">
 
                            </p>
 
 
                            <p>What if the concentration of chloromycetin solution up to 1 ug/mL?<br><img
 
                                    src="https://static.igem.org/mediawiki/2015/0/0a/Ustc-2015-results-4.png" alt="图片名称"><br>A
 
                                quite linear increase of the proportion of the moving bacteria with time is observed.
 
                            </p>
 
 
                            <p>Consequently, according to our experiment, genetically naturally bacteria could respond
 
                                to chloromycetin solution from 0.1 ug/mL to more than 1ug/mL, which is quite promising
 
                                after genetic modification.</p>
 
 
                            <p><img src="https://static.igem.org/mediawiki/2015/c/c3/Finalresult.png" alt="图片名称"></p>
 
                        </div>
 
                    </div>
 
                    <div class="col hide-on-small-only m3">
 
                        <div class="toc-wrapper pinned">
 
                            <ul class="section table-of-contents">
 
                                <li>
 
                                    <a href="#characterization-of-optimal-conditions-on-polylysine-pll-coated-assay">Characterization of Optimal Conditions on Polylysine(PLL) Coated Assay</a>
 
                                </li>
 
                                <div class="divider"></div>
 
                                <li>
 
                                    <a href="#Best_Bacterial_Developmental_Interval_Along_with_Recommended_Dilution_Conditions">Best Bacterial Developmental Interval Along with Recommended Dilution Conditions</a>
 
                                </li>
 
                                <div class="divider"></div>
 
                                <li>
 
                                    <a href="#Best_PLL-Coated_Concentration_and_Pre-treatment_Time">Best PLL-Coated Concentration and Pre-treatment Time.</a>
 
                                </li>
 
                                <div class="divider"></div>
 
                                <li>
 
                                    <a href="#Adhesion_Assay_with_PLL_treatment">Adhesion Assay with PLL treatment</a>
 
                                </li>
 
                                <div class="divider"></div>
 
                                <li>
 
                                    <a href="#Best_PLL-Coated_Time">Best PLL-Coated Time</a>
 
                                </li>
 
                                <div class="divider"></div>
 
                                <li>
 
                                    <a href="#Best_Measurement_Interval">Best Measurement Interval</a>
 
                                </li>
 
                            </ul>
 
                        </div>
 
                    </div>
 
                </div>
 
            </div>
 
  
 
         <div id="Parts" class="row">
 
         <div id="Parts" class="row">
Line 764: Line 207:
 
                     <div class="card-content">
 
                     <div class="card-content">
 
                         <groupparts>iGEM015 Example</groupparts>
 
                         <groupparts>iGEM015 Example</groupparts>
                    </div>
 
 
                     </div>
 
                     </div>
  
 
                 </div>
 
                 </div>
 +
               
 
             </div>
 
             </div>
 
 
         </div>
 
         </div>
 +
 +
  
 
     </div>
 
     </div>

Revision as of 01:49, 19 September 2015

This year, we choose several parts to conduct our projects. The main functions of the function we use are as follow:

  1. Promoters.
  2. Proteins to improve the bactial permeability.
  3. Porins.
  4. Proteins to improve the mobile of bacteria.
  5. Sense system.
Code Name Part Name Function
BBa_K1593207 micF Promoter sensing sulfoamid
BBa_K1593208 SoxS Promoter sensing tetracycline
BBa_K1593209 OprF The major porin of Pseudomonas aeruginosa allowing diffusion of polysaccharides in a range of 2000 to 3000 Da.
BBa_K1593666 SCVE SARS Coronavirus Envelope Protein, improving the bactial permeability.
BBa_K1593998 cheZ Chemotactic protein. When it is overexpressed, the mobility of bacteria will be improved.
BBa_K1593667 T7-RBS-SCVE Circuit containing strong expression of SCVE regulated by T7, which will significantly improve bacterial permeability.
BBa_K1593210 T7-RBS-OprF Using T7 strong promoter to express OprF, derived from Pseudomonus areuginosa, would strongly improve the bacterial permeability.
BBa_K1593997 R0010-RBS-cheZ Used to coding a chemotactci protein, cheZ, downstream of lac promotor.
BBa_K1593211 micF-RBS-GFP A basic part on antibiotic substance sensing-reporting system.
BBa_K1593001 COMPX Express an outmembrane protein with a point mutation

A list of composit parts USTC iGEM 2015 have submitted to the Registry.The main functions of these composite parts are as following:

  1. To improve the permeability of bacteria;
  2. To modify the chemotaxis of bacteria;
  3. To modify outmembrane protein;
  4. To test the response of promtor.
Code Name Parts Name Type Function
BBa_K1593667 T7-RBS-SCVE Translational_Unit overexpress SCVE to improve the permeability of bacterial
BBa_K1593210 T7-RBS-OprF Coding overexpress OprF to improve the permeability of bacterial
BBa_K1593997 R0010-RBS-cheZ Coding overexpress cheZ under the control of lac to improve the chemotaxis of bacterial
BBa_K1593211 micF-RBS-GFP Translational_Unit test the response of micF to antibiotics using the GFP report system
BBa_K1593888 tRNA&tRNA Synthetase Translational_Unit express a rare amino acid,pAzF
BBa_K1593002 tRNA complex with Compx Device orthogonal system to express Compx
BBa_K1593000 lac-compx with RFP Device overexpress compx and detect its quantity by GFP
iGEM015 Example
Contact Us

University of Science and Technology of China, No.96, JinZhai Road Baohe District,Hefei,Anhui, 230026,P.R.China.

Links