Team:Reading/Description



Add a banner to your wiki!

You can make the image 980px by 200px

Remember to call the file: "Team_Reading_banner.jpg"

Project Description

We aim to produce a biological photovoltaic (BPV) using the cyanobacterium Synechocystis sp. PCC 6803 (hereafter referred to as Synechocystis). This year, we are taking on the project of the 2014 Reading team, and we plan to build on the successes of their project, by increasing the efficiency of the BPV, and also to improve the concept and the practical use of the fuel cell.


Background

We encourage you to put up a lot of information and content on your wiki, but we also encourage you to include summaries as much as possible. If you think of the sections in your project description as the sections in a publication, you should try to be consist, accurate and unambiguous in your achievements.

Judges like to read your wiki and know exactly what you have achieved. This is how you should think about these sections; from the point of view of the judge evaluating you at the end of the year.


References

iGEM teams are encouraged to record references you use during the course of your research. They should be posted somewhere on your wiki so that judges and other visitors can see how you though about your project and what works inspired you.

Inspiration

See how other teams have described and presented their projects:


Fuel Cell Design

With recent declines in fossil fuel cell availability and increasing concerns of the effects of global warming research into microbial fuel cells (MFCs) has been becoming more popular after the decline in 1965. Our team seeks to aid this re-emerging area with our own MFC with Cyanobacteria Synechocystis sp. PCC 6803. Part of our aim is to increase the inherent efficiency of the fuel cell itself by improving bacteria electrode interactions and improve voltage generation over our prior teams efforts. To achieve this we have designed a cell that utilises the sedimentation aspect of bacteria in situ by lining the base of one half cell with the anode creating a simple biofilm which electrons can be harvested from. The cell is designed to have a large surface area and to be flat in order to make the most use of bacteria in the half cell for increased efficiency. <img src= "File:IGEM_Fuel_Cell.jpg">