Difference between revisions of "Team:BostonU"

 
(42 intermediate revisions by 3 users not shown)
Line 28: Line 28:
 
     padding: 10px;
 
     padding: 10px;
 
     height: 300px;
 
     height: 300px;
 +
    margin-right: auto;
 +
    margin-left: auto;
 
     box-shadow: 5px 5px 2px #888888;
 
     box-shadow: 5px 5px 2px #888888;
 
     border-radius: 10px;
 
     border-radius: 10px;
Line 44: Line 46:
 
         font-style:italic;
 
         font-style:italic;
 
}
 
}
h2, h3, h4, h5 {
+
h2, h4, h5 {
 
     color: #000000;
 
     color: #000000;
 
     font-weight: bold;
 
     font-weight: bold;
Line 55: Line 57:
  
 
*/
 
*/
    </style>
+
</style>
 
+
 
+
 
</header>
 
</header>
 
<body bgcolor="#DBDBFF">
 
<body bgcolor="#DBDBFF">
Line 68: Line 68:
 
<div id="contentpage">
 
<div id="contentpage">
 
<div id="mainpage">
 
<div id="mainpage">
<h2 style="font-color:#000000;">Developing conditionally dimerizable split protein systems for genetic logic and genome editing applications </h2>
+
<h2 style="font-color:#000000; margin-left:50px;">Developing conditionally dimerizable split protein systems for genetic logic and genome editing applications </h2>
  
<p>The field of synthetic biology seeks to engineer desirable cellular functionalities by developing molecular technologies that enable precise genetic manipulation. A promising solution is to reliably control proteins that naturally execute genetic modifications. Current strategies to regulate activity of such proteins primarily rely on modulating protein expression level through transcriptional control; however, these methods are susceptible to slow response and leaky expression. In contrast, strategies that exploit post-translational regulation of activity, such as conditional dimerization of split protein halves, have been demonstrated to bypass these limitations. Here, we compare the relative efficiency of previously characterized dimerization domains in regulating activities of three important genetic manipulation proteins - integrases and recombination directionality factors for genetic logic applications, and saCas9 for in vivo genome editing applications. We also establish guidelines to rationally identify promising protein split sites. Our characterization of these systems in mammalian cells ultimately paves way for important biomedical applications.</p>
+
<p style="padding-bottom:50px;">The field of synthetic biology seeks to engineer desirable cellular functionalities by developing molecular technologies that enable precise genetic manipulation. A promising solution is to reliably control proteins that naturally execute genetic modifications. Current strategies to regulate activity of such proteins primarily rely on modulating protein expression level through transcriptional control; however, these methods are susceptible to slow response and leaky expression. In contrast, strategies that exploit post-translational regulation of activity, such as conditional dimerization of split protein halves, have been demonstrated to bypass these limitations. Here, we compare the relative efficiency of previously characterized dimerization domains in regulating activities of three important genetic manipulation proteins - integrases and recombination directionality factors for genetic logic applications, and saCas9 for in vivo genome editing applications. We also establish guidelines to rationally identify promising protein split sites. Our characterization of these systems in mammalian cells ultimately paves way for important biomedical applications.</p>
  
 
<center>
 
<center>
 
<table align="center">
 
<table align="center">
 
<tr>
 
<tr>
<td><center><img style="height:45%; width:45%; padding:30px;" src="https://static.igem.org/mediawiki/2015/thumb/9/99/Active_and_inactive_protein.png/800px-Active_and_inactive_protein.png" /></center></td>
+
<td><center><a href="https://2015.igem.org/Team:BostonU/Temporal_Control"><img style="height:85%; width:85%;" src="https://static.igem.org/mediawiki/2015/thumb/9/99/Active_and_inactive_protein.png/800px-Active_and_inactive_protein.png" /></a><center></td>
<td><center><img style="height:25%; width:25%; padding:30px;" src="https://static.igem.org/mediawiki/2015/thumb/b/ba/Transcriptional_logic_circuit.png/800px-Transcriptional_logic_circuit.png" /></center></td>
+
<td><center><a href="https://2015.igem.org/Team:BostonU/App_1/Motivation"><img style="height:85%; width:85%; padding-left:30px; padding-right:30px;" src="https://static.igem.org/mediawiki/2015/thumb/8/86/Home_page_integrase_RDF.png/562px-Home_page_integrase_RDF.png" /></a></center></td>
<td><center><img style="height:25%; width:25%; padding:30px;" src="https://static.igem.org/mediawiki/2015/thumb/b/ba/Transcriptional_logic_circuit.png/800px-Transcriptional_logic_circuit.png" /></center></td>
+
<td><center><a href="https://2015.igem.org/Team:BostonU/App_2/Motivation"><img style="height:60%; width:60%;" src="https://static.igem.org/mediawiki/2015/thumb/1/1c/Crispr_cas9_labeled.png/800px-Crispr_cas9_labeled.png" /></a></center></td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
<td><h3 align="center">Conditional Dimerization</h3></td>
+
<td><h3 align="center" style="padding-bottom:50px;">Controlling Protein Activity</h3></td>
<td><h3 align="center">Integrase and RDF</h3></td>
+
<td><h3 align="center" style="padding-bottom:50px;">Controlling Integrases and RDFs</h3></td>
<td><h3 align="center">saCas9</h3></td>
+
<td><h3 align="center" style="padding-bottom:50px;">Controlling saCas9</h3></td>
  
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
<td><center><img style="height:25%; width:25%; padding:30px;" src="https://static.igem.org/mediawiki/2015/thumb/b/ba/Transcriptional_logic_circuit.png/800px-Transcriptional_logic_circuit.png" /></center></td>
+
<td><center><a href="https://2015.igem.org/Team:BostonU/Mammalian_synbio/Significance"><img style="height:50%; width:50%;" src="https://static.igem.org/mediawiki/2015/thumb/5/59/Mammalian_syn_bio_home_page.png/618px-Mammalian_syn_bio_home_page.png" /></a></center></td>
<td><center><img style="height:25%; width:25%; padding:30px;" src="https://static.igem.org/mediawiki/2015/thumb/b/ba/Transcriptional_logic_circuit.png/800px-Transcriptional_logic_circuit.png" /></center></td>
+
<td><center><a align="center" href="https://2015.igem.org/Team:BostonU/Education/Building_with_Biology"><img style="height:95%; width:95%; padding-left:30px; padding-right:30px;" src="https://static.igem.org/mediawiki/2015/c/c5/Building_w_biology.jpg" /></a></center></td>
<td><center><img style="height:25%; width:25%; padding:30px;" src="https://static.igem.org/mediawiki/2015/thumb/b/ba/Transcriptional_logic_circuit.png/800px-Transcriptional_logic_circuit.png" /></center></td>
+
<td><center><a href="https://2015.igem.org/Team:BostonU/Attributions"><img style="height:200px; width:200px;" src="https://static.igem.org/mediawiki/2015/3/39/Thank_you_attributions.png"/></a></center></td>
 +
</div>
 
</tr>
 
</tr>
  
Line 99: Line 100:
 
</tr>
 
</tr>
 
</table>
 
</table>
</center>
+
<br><br><br><br><br><br><br><br>
 +
<h4 style="font-size:25px; text-align:center;">iGEM Jamboree 2015 Results</h4>
 +
<ol style="font-size:23px;text-align:center">Medal Received: Gold.<br>Nominated for Best Foundational Advance Project</li>
  
  
  
 +
<br><br><br>
  
 
</body>
 
</body>
 
</html>
 
</html>

Latest revision as of 20:30, 3 October 2015

Home

Developing conditionally dimerizable split protein systems for genetic logic and genome editing applications

The field of synthetic biology seeks to engineer desirable cellular functionalities by developing molecular technologies that enable precise genetic manipulation. A promising solution is to reliably control proteins that naturally execute genetic modifications. Current strategies to regulate activity of such proteins primarily rely on modulating protein expression level through transcriptional control; however, these methods are susceptible to slow response and leaky expression. In contrast, strategies that exploit post-translational regulation of activity, such as conditional dimerization of split protein halves, have been demonstrated to bypass these limitations. Here, we compare the relative efficiency of previously characterized dimerization domains in regulating activities of three important genetic manipulation proteins - integrases and recombination directionality factors for genetic logic applications, and saCas9 for in vivo genome editing applications. We also establish guidelines to rationally identify promising protein split sites. Our characterization of these systems in mammalian cells ultimately paves way for important biomedical applications.

Controlling Protein Activity

Controlling Integrases and RDFs

Controlling saCas9

Mammalian Synthetic Biology

Education and Outreach

Attributions









iGEM Jamboree 2015 Results

    Medal Received: Gold.
    Nominated for Best Foundational Advance Project