Difference between revisions of "Team:LaVerne-Leos/Project"

 
(28 intermediate revisions by 2 users not shown)
Line 92: Line 92:
 
<li><a href="https://2015.igem.org/Team:LaVerne-Leos">Home</a></li>
 
<li><a href="https://2015.igem.org/Team:LaVerne-Leos">Home</a></li>
 
                     <li class="active"><a href="https://2015.igem.org/Team:LaVerne-Leos/Project">Project</a></li>  
 
                     <li class="active"><a href="https://2015.igem.org/Team:LaVerne-Leos/Project">Project</a></li>  
 +
                    <li><a href="https://2015.igem.org/Team:LaVerne-Leos/Parts">Parts</a></li>
 
                     <li><a href="https://2015.igem.org/Team:LaVerne-Leos/Notebook">Notebook</a></li>
 
                     <li><a href="https://2015.igem.org/Team:LaVerne-Leos/Notebook">Notebook</a></li>
 
                     <li><a href="https://2015.igem.org/Team:LaVerne-Leos/Practices">Human Practices</a></li>  
 
                     <li><a href="https://2015.igem.org/Team:LaVerne-Leos/Practices">Human Practices</a></li>  
Line 112: Line 113:
 
 
 
 
 
</div>
 
</div>
 +
 
<div>
 
<div>
 
<div id="background" style="padding:20px 0">
 
<div id="background" style="padding:20px 0">
Line 119: Line 121:
 
<li><a href= "#design"><span class="filter" data-filter="app">Design</span></a></li>
 
<li><a href= "#design"><span class="filter" data-filter="app">Design</span></a></li>
 
<li><a href= "#results"><span class="filter" data-filter="card">Results</span></a></li>
 
<li><a href= "#results"><span class="filter" data-filter="card">Results</span></a></li>
<li><a href= "#modeling"><span class="filter" data-filter="icon">Modeling</span></a></li>
+
<!--<li><a href= "#modeling"><span class="filter" data-filter="icon">Modeling</span></a></li>
<li><a href= "#parts"><span class="filter" data-filter="logo">Parts</span></a></li>
+
<li><a href= "#parts"><span class="filter" data-filter="logo">Parts</span></a></li>-->
 
  </ul>
 
  </ul>
 
  <div class="clear"></div></div></div>
 
  <div class="clear"></div></div></div>
Line 127: Line 129:
 
  <div style="    " class="">
 
  <div style="    " class="">
 
<div class="wrapper"> <div class="wrap">
 
<div class="wrapper"> <div class="wrap">
        <p>Currently, cyanobacteria is used to produce biofuel, however the process is too costly and inefficient to use on a large-scale production to replace fossil fuels. Many researchers have been successful increasing the amount of free fatty acids produced within the cells, which serve as the precursors to biofuel. However, scientists constantly run into a problem: high amounts of free fatty acids are toxic to the cell and kill it. Our aim is to reengineer cyanobacteria to increase the efficiency of biofuel production by improving the yield of fatty acids produced within each cell while solving the toxicity problem. To aid the cells in surviving these high amounts of toxicity we plan to upregulate the cells carotenoids, which will stabilize the cell membrane and get rid of reactive oxygen species. With a stronger, more stable cell membrane, the cyanobacteria will be able to yield more free fatty acids, thus producing more biofuel, making it a step closer to the solution of a renewable energy source.  <br>
+
        <p>Currently, cyanobacteria is used to produce biofuel, however the process is too costly and inefficient to use on a large-scale production to replace fossil fuels. Many researchers have been successful increasing the amount of free fatty acids produced within the cells, which serve as the precursors to biofuel. However, scientists constantly run into a problem: high amounts of free fatty acids are toxic to the cell and kill it. Our aim is to reengineer cyanobacteria to increase the efficiency of biofuel production by improving the yield of fatty acids produced within each cell while solving the toxicity problem. To aid the cells in surviving these high amounts of toxicity we plan to upregulate the cells' carotenoids, which will stabilize their membranes and get rid of reactive oxygen species. With a stronger, more stable cell membrane, the cyanobacteria should be able to produce more free fatty acids, thus producing more biofuel, bringing humanity a step closer to acquiring a source of renewable energy.  <br>
 
<p align="center"><img src="https://static.igem.org/mediawiki/2015/7/78/LaVerne_Leos_Zeaxanthin.jpg" alt="" style="border:1px solid black"/></p>
 
<p align="center"><img src="https://static.igem.org/mediawiki/2015/7/78/LaVerne_Leos_Zeaxanthin.jpg" alt="" style="border:1px solid black"/></p>
<p> Carotenoid pigments are naturally occurring within photosynthetic organisms, and protect the cell against high amounts of light exposure. Specifically, Zeaxanthin, is one of the carotenoids that can be synthesized within cells. Some bacteria, such as Staphlycoccus Aureus, are able to live in the fatty acids located on our skin (citation). The mechanism in which these bacteria are able to thrive is by up regulating genes related to cell wall thickness, and membrane bound carotenoid concentrations. By using this same mechanism we hope to help the cyanobacteria cope with the fatty acids that they themselves have been genetically modified to make.</p>
+
<p> Carotenoid pigments are naturally occurring within photosynthetic organisms, and protect the cell against high amounts of light exposure. Specifically, Zeaxanthin is one of the carotenoids that can be synthesized within cells. Some bacteria, such as Staphlycoccus aureus, are able to live in the fatty acids located on our skin (citation). The mechanism in which these bacteria are able to thrive is by upregulating genes related to cell wall thickness and membrane bound carotenoid concentrations. By using this same mechanism, we hope to help the cyanobacteria cope with the fatty acids that they themselves have been genetically modified to make.</p>
 
<p align="center"><img src="https://static.igem.org/mediawiki/2015/4/41/La_Verne_Leos_Tocopherols.png" alt="" style="border:1px solid black"/></p>
 
<p align="center"><img src="https://static.igem.org/mediawiki/2015/4/41/La_Verne_Leos_Tocopherols.png" alt="" style="border:1px solid black"/></p>
<p> The amount of tocopherols within a cell is proportional with the amount of fatty acids produced, which indicates that the more fatty acids produced, the more tocopherols are produced. Due to this dynamic relationship, making a large amount of tocopherols requires an increase of the rate limiting enzyme homogentisic acid.</p>
+
<p> Tocopherols are photosynthesis-increasing metabolites that have similar properties to zeaxanthin in cyanobacteria and act as an antioxidant, protecting the cell from lipid peroxidation, a chain reaction affecting unsaturated hydrophobic compounds, including fatty acids, that degrades the cell membrane (Sattler, S. E., Cahoon, E. B., Coughlan, S. J., & DellaPenna, D., 2003). They protect the cell membrane by donating an electron to create resonance-stabilized tocopheroxyl radicals. This stops the lipid peroxidation reaction right in its tracks. Thus, the tocopherols are able to protect polyunsaturated fatty acids from lipid peroxidation, strengthening the cell membrane and possibly preventing cell death. Therefore, we suspect the increased presence of tocopherols could potentially increase a cell's tolerance to fatty acids. </p>
 
</p>
 
</p>
 
</div>
 
</div>
Line 141: Line 143:
 
<li><a href= "#design"><span class="filter active" data-filter="app">Design</span></a></li>
 
<li><a href= "#design"><span class="filter active" data-filter="app">Design</span></a></li>
 
<li><a href= "#results"><span class="filter" data-filter="card">Results</span></a></li>
 
<li><a href= "#results"><span class="filter" data-filter="card">Results</span></a></li>
<li><a href= "#modeling"><span class="filter" data-filter="icon">Modeling</span></a></li>
+
<!--<li><a href= "#modeling"><span class="filter" data-filter="icon">Modeling</span></a></li>
<li><a href= "#parts"><span class="filter" data-filter="logo">Parts</span></a></li>
+
<li><a href= "#parts"><span class="filter" data-filter="logo">Parts</span></a></li>-->
 
  </ul>
 
  </ul>
 
  <div class="clear"></div></div>
 
  <div class="clear"></div></div>
Line 149: Line 151:
 
<!-- <div style="float: left;"><IMG SRC="https://static.igem.org/mediawiki/2015/7/7f/LaVerne_Leos_ZeaxPathway.gif"> The pathway on the left shows the biosynthetic pathway of zeaxanthin. </div> -->          
 
<!-- <div style="float: left;"><IMG SRC="https://static.igem.org/mediawiki/2015/7/7f/LaVerne_Leos_ZeaxPathway.gif"> The pathway on the left shows the biosynthetic pathway of zeaxanthin. </div> -->          
  
<img src="https://static.igem.org/mediawiki/2015/d/d9/La_Verne_Leos_FULLCircuits.jpg" alt="" align="center" border="1" />
+
<p align="center"><img src="https://static.igem.org/mediawiki/2015/8/88/FULL.jpg" alt="" style="border:1px solid black"/></p><br><br>
 +
 
 +
<p align="center"><img src="https://static.igem.org/mediawiki/2015/6/6a/La_Verne_Leos_Methodology.png" alt="" /></p>
 +
 
 
</div>
 
</div>
 
<div id="results" style="padding:20px 0">
 
<div id="results" style="padding:20px 0">
Line 157: Line 162:
 
<li><a href= "#design"><span class="filter" data-filter="app">Design</span></a></li>
 
<li><a href= "#design"><span class="filter" data-filter="app">Design</span></a></li>
 
<li><a href= "#results"><span class="filter active" data-filter="card">Results</span></a></li>
 
<li><a href= "#results"><span class="filter active" data-filter="card">Results</span></a></li>
<li><a href= "#modeling"><span class="filter" data-filter="icon">Modeling</span></a></li>
+
<!-- <li><a href= "#modeling"><span class="filter" data-filter="icon">Modeling</span></a></li>
<li><a href= "#parts"><span class="filter" data-filter="logo">Parts</span></a></li>
+
<li><a href= "#parts"><span class="filter" data-filter="logo">Parts</span></a></li> -->
 
  </ul>
 
  </ul>
 
  <div class="clear"></div></div>
 
  <div class="clear"></div></div>
  
 
<div class="wrap" align="center">
 
<div class="wrap" align="center">
        <img src="https://static.igem.org/mediawiki/2015/9/99/LaVerne-Leos_Under_Construction.png" alt="" align="center"/>
+
        <p align="center"><img src="https://static.igem.org/mediawiki/2015/e/e9/La_Verne_Leos_PelletPic.jpg" alt="" style="border:1px solid black"/><figcaption> Untransformed bacterial pellet appears white and the bacterial pellet that expresses zeaxanthin appears orange. </figcaption>
 +
</figure><br><br>
 +
 
 +
<figure align="center" ><img src="https://static.igem.org/mediawiki/2015/5/50/Final_Gel_Photo_%285_Parts%29.jpeg" alt="" style="border:1px solid black"/><figcaption>Constructs were digested with EcoRI and PstI and run on an agarose gel. The expected band sizes were seen.  </figcaption> </figure><br><br>
 +
 
 +
<figure align="center"><img src="https://static.igem.org/mediawiki/2015/1/16/La_Verne_Leos_GFPExpression.png" alt="" style="border:1px solid black"/><figcaption>GFP Expression in E. Coli. Transformed cells were analyzed  by FACS. Mean FL1 signal was calculated. Untransformed E. Coli were used as a control.</figcaption> </figure><br><br>
 +
 
 +
<figure align="center"><img src="https://static.igem.org/mediawiki/2015/4/42/La_Verne_Leos_CellRoxData.png" alt="" style="border:1px solid black"/><figcaption>The Response of Cell ROX Green and Cell ROX Orange in E. Coli and S. Elongatus. The cells were treated with 50mM H2O2 and analyzed by FACS. Mean FL1 signal was calculated for Cell ROX Green treated cells and mean FL2 signal was calculated for Cell ROX Orange treated cells. </figcaption> </figure>
 +
 
 
</div>
 
</div>
 
+
<!--
 
<div id="modeling" style="padding:20px 0">
 
<div id="modeling" style="padding:20px 0">
 
<div class="container">
 
<div class="container">
Line 172: Line 185:
 
<li><a href= "#design"><span class="filter" data-filter="app">Design</span></a></li>
 
<li><a href= "#design"><span class="filter" data-filter="app">Design</span></a></li>
 
<li><a href= "#results"><span class="filter" data-filter="card">Results</span></a></li>
 
<li><a href= "#results"><span class="filter" data-filter="card">Results</span></a></li>
<li><a href= "#modeling"><span class="filter active" data-filter="icon">Modeling</span></a></li>
+
<li><a href= "#modeling"><span class="filter active" data-filter="icon">Modeling</span></a></li>
<li><a href= "#parts"><span class="filter" data-filter="logo">Parts</span></a></li>
+
<li><a href= "#parts"><span class="filter" data-filter="logo">Parts</span></a></li>  
 
  </ul>
 
  </ul>
 
  <div class="clear"></div></div>
 
  <div class="clear"></div></div>
Line 192: Line 205:
 
  <div class="clear"></div>
 
  <div class="clear"></div>
  
<!-- <div class="wrap" align="center">
+
<div class="wrap" align="center">
 
        <img src="https://static.igem.org/mediawiki/2015/9/99/LaVerne-Leos_Under_Construction.png" alt="" align="center"/>
 
        <img src="https://static.igem.org/mediawiki/2015/9/99/LaVerne-Leos_Under_Construction.png" alt="" align="center"/>
 
</div> -->
 
</div> -->
 +
<h1> References </h1>
 +
<p align="left">
  
<table border="1" style="width:70%" align="center">
+
Desbois, A. P., & Smith, V. J. (2010). Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Applied Microbiology & Biotechnology, 85(6), 1629–1642. http://doi.org/10.1007/s00253-009-2355-3
  <tr>
+
<br><br>
    <td style="font-weight:bold">Part Number</td>
+
Qi, Q., Hao, M., Ng, W., Slater, S. C., Baszis, S. R., Weiss, J. D., & Valentin, H. R. (2005). Application of the synechococcus nirA promoter to establish an inducible expression system for engineering the synechocystis tocopherol pathway. Retrieved from http://aem.asm.org/content/71/10/5678.full
    <td style="font-weight:bold">Description</td>
+
<br><br>
    <td style="font-weight:bold">Length</td>
+
Ruffing, A. M., & Jones, H. D. T. (2012). Physiological Effects of Free Fatty Acid Production in Genetically Engineered Synechococcus elongatus PCC 7942. Biotechnology and Bioengineering, 109(9), 2190–2199. http://doi.org/10.1002/bit.24509
  </tr>
+
<br><br>
 
+
Sattler, S. E., Cahoon, E. B., Coughlan, S. J., & DellaPenna, D. (2003). Characterization of tocopherol cyclases from higher plants and cyanobacteria. Evolutionary implications for tocopherol synthesis and function. Retrieved from www.plantphysiol.org/content/132/4/2184.full
  <tr>
+
<br><br>
    <td> <a href="http://parts.igem.org/Part:BBa_K1747007" target="_blank">BBa_K1747007</a></td>
+
Stahl, W., & Sies, H. (2003). Antioxidant activity of carotenoids. Molecular Aspects of Medicine, 24(6), 345–351. http://doi.org/10.1016/S0098-2997(03)00030-X
    <td>Circuit coding for Beta-Carotene hydroxylase and GFP for analysis.</td>
+
</p>
<td> 1529 BP </td>
+
 
+
  </tr>
+
 
+
<tr style="background-color: #ededed">
+
    <td> <a href="http://parts.igem.org/Part:BBa_K1747008" target="_blank">BBa_K1747008</a></td>
+
    <td>Circuit coding for Beta-Carotene hydroxylase and GFP, but is only active in the presence of fatty acids. </td>
+
<td>2604 BP</td>
+
 
+
  </tr>
+
 
+
<tr>
+
    <td> <a href="http://parts.igem.org/Part:BBa_K1747010" target="_blank">BBa_K1747010</a></td>
+
    <td>Constitutive promoter that codes for crtZ and GFP. </td>
+
<td>1363 BP</td>
+
 
+
  </tr>
+
 
+
<tr style="background-color: #ededed">
+
    <td> <a href="http://parts.igem.org/Part:BBa_K1747011" target="_blank">BBa_K1747011</a></td>
+
    <td>Complete circuit coding for six genes including GFP, crtZ, crtE, crtB, crtI, and crtY. </td>
+
<td>6165 BP</td>
+
 
+
  </tr>
+
 
+
<tr>
+
    <td> <a href="http://parts.igem.org/Part:BBa_K1747016" target="_blank">BBa_K1747016</a></td>
+
    <td>Circuit that codes for homogentisic acid and GFP. </td>
+
<td>1492 BP</td>
+
 
+
  </tr>
+
<!--
+
<tr style="background-color: #ededed">
+
    <td> <a href="http://parts.igem.org/Part:BBa_B0034" target="_blank">BBa_B0034</a></td>
+
    <td>Strong RBS </td>
+
<td>12 BP</td>
+
 
+
  </tr>
+
 
+
<tr>
+
    <td> <a href="http://parts.igem.org/Part:pSB1C3" target="_blank">pSB1C3</a></td>
+
    <td>Plasmid backbone, resistant to chloramphenicol</td>
+
<td>2070 BP</td>
+
 
+
  </tr> --!>
+
 
+
 
+
</table>
+
+
 
 
 
<div class="clear"> </div>
 
<div class="clear"> </div>
Line 301: Line 267:
 
<li><a href="https://2015.igem.org/Team:LaVerne-Leos">Home</a></li>
 
<li><a href="https://2015.igem.org/Team:LaVerne-Leos">Home</a></li>
 
<li><a href="https://2015.igem.org/Team:LaVerne-Leos/Project">Project</a></li>
 
<li><a href="https://2015.igem.org/Team:LaVerne-Leos/Project">Project</a></li>
 +
                                        <li><a href="https://2015.igem.org/Team:LaVerne-Leos/Parts">Parts</a></li>
 
                                         <li><a href="https://2015.igem.org/Team:LaVerne-Leos/Notebook">Notebook</a></li>  
 
                                         <li><a href="https://2015.igem.org/Team:LaVerne-Leos/Notebook">Notebook</a></li>  
 
                                         <li><a href="https://2015.igem.org/Team:LaVerne-Leos/Practices">Human Practices</a></li>  
 
                                         <li><a href="https://2015.igem.org/Team:LaVerne-Leos/Practices">Human Practices</a></li>  

Latest revision as of 05:53, 19 November 2015

Team:LaVerne-Leos 2015.igem.org

Currently, cyanobacteria is used to produce biofuel, however the process is too costly and inefficient to use on a large-scale production to replace fossil fuels. Many researchers have been successful increasing the amount of free fatty acids produced within the cells, which serve as the precursors to biofuel. However, scientists constantly run into a problem: high amounts of free fatty acids are toxic to the cell and kill it. Our aim is to reengineer cyanobacteria to increase the efficiency of biofuel production by improving the yield of fatty acids produced within each cell while solving the toxicity problem. To aid the cells in surviving these high amounts of toxicity we plan to upregulate the cells' carotenoids, which will stabilize their membranes and get rid of reactive oxygen species. With a stronger, more stable cell membrane, the cyanobacteria should be able to produce more free fatty acids, thus producing more biofuel, bringing humanity a step closer to acquiring a source of renewable energy.

Carotenoid pigments are naturally occurring within photosynthetic organisms, and protect the cell against high amounts of light exposure. Specifically, Zeaxanthin is one of the carotenoids that can be synthesized within cells. Some bacteria, such as Staphlycoccus aureus, are able to live in the fatty acids located on our skin (citation). The mechanism in which these bacteria are able to thrive is by upregulating genes related to cell wall thickness and membrane bound carotenoid concentrations. By using this same mechanism, we hope to help the cyanobacteria cope with the fatty acids that they themselves have been genetically modified to make.

Tocopherols are photosynthesis-increasing metabolites that have similar properties to zeaxanthin in cyanobacteria and act as an antioxidant, protecting the cell from lipid peroxidation, a chain reaction affecting unsaturated hydrophobic compounds, including fatty acids, that degrades the cell membrane (Sattler, S. E., Cahoon, E. B., Coughlan, S. J., & DellaPenna, D., 2003). They protect the cell membrane by donating an electron to create resonance-stabilized tocopheroxyl radicals. This stops the lipid peroxidation reaction right in its tracks. Thus, the tocopherols are able to protect polyunsaturated fatty acids from lipid peroxidation, strengthening the cell membrane and possibly preventing cell death. Therefore, we suspect the increased presence of tocopherols could potentially increase a cell's tolerance to fatty acids.



Untransformed bacterial pellet appears white and the bacterial pellet that expresses zeaxanthin appears orange.


Constructs were digested with EcoRI and PstI and run on an agarose gel. The expected band sizes were seen.


GFP Expression in E. Coli. Transformed cells were analyzed by FACS. Mean FL1 signal was calculated. Untransformed E. Coli were used as a control.


The Response of Cell ROX Green and Cell ROX Orange in E. Coli and S. Elongatus. The cells were treated with 50mM H2O2 and analyzed by FACS. Mean FL1 signal was calculated for Cell ROX Green treated cells and mean FL2 signal was calculated for Cell ROX Orange treated cells.

References

Desbois, A. P., & Smith, V. J. (2010). Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Applied Microbiology & Biotechnology, 85(6), 1629–1642. http://doi.org/10.1007/s00253-009-2355-3

Qi, Q., Hao, M., Ng, W., Slater, S. C., Baszis, S. R., Weiss, J. D., & Valentin, H. R. (2005). Application of the synechococcus nirA promoter to establish an inducible expression system for engineering the synechocystis tocopherol pathway. Retrieved from http://aem.asm.org/content/71/10/5678.full

Ruffing, A. M., & Jones, H. D. T. (2012). Physiological Effects of Free Fatty Acid Production in Genetically Engineered Synechococcus elongatus PCC 7942. Biotechnology and Bioengineering, 109(9), 2190–2199. http://doi.org/10.1002/bit.24509

Sattler, S. E., Cahoon, E. B., Coughlan, S. J., & DellaPenna, D. (2003). Characterization of tocopherol cyclases from higher plants and cyanobacteria. Evolutionary implications for tocopherol synthesis and function. Retrieved from www.plantphysiol.org/content/132/4/2184.full

Stahl, W., & Sies, H. (2003). Antioxidant activity of carotenoids. Molecular Aspects of Medicine, 24(6), 345–351. http://doi.org/10.1016/S0098-2997(03)00030-X