Difference between revisions of "Team:Nankai/Modeling"

 
(23 intermediate revisions by the same user not shown)
Line 4: Line 4:
 
<style type="text/css">
 
<style type="text/css">
  
 
+
.gap{
 
+
margin-top:15px;
body {
+
font-family: "Gill Sans MT",Consolas,Constantia;
+
 
}
 
}
 
  
  
Line 47: Line 44:
 
}
 
}
 
.normalsection .title h3 {
 
.normalsection .title h3 {
 +
font-family: 'Segoe UI',Gill Sans,Lucida Sans,Consolas;
 
font-size:40px;
 
font-size:40px;
 
 
color:#10A300;
 
color:#10A300;
 
margin-top:20px;
 
margin-top:20px;
Line 56: Line 53:
 
margin-top:10px;
 
margin-top:10px;
 
margin-bottom:-80px;
 
margin-bottom:-80px;
background-color:#0200FF;
+
background-color:#53C94F;
  
 
text-align:center;
 
text-align:center;
Line 62: Line 59:
 
}
 
}
 
.headsection h3{
 
.headsection h3{
 +
font-family: 'Segoe UI',Gill Sans,Lucida Sans,Consolas;
 
font-size:45px;
 
font-size:45px;
 
line-height:49px;
 
line-height:49px;
Line 71: Line 69:
 
font-weight:bold;
 
font-weight:bold;
 
line-height:35px;
 
line-height:35px;
 +
font-family:"Constantia",Gotham,Consolas;
 
}
 
}
 
.normalsection .box_1 .title h4 {
 
.normalsection .box_1 .title h4 {
Line 82: Line 81:
 
font-weight:normal;
 
font-weight:normal;
 
line-height:30px;
 
line-height:30px;
 +
font-family:"Lucida Sans Unicode",Times New Roman,Constantia,Gotham,Consolas;
 
}
 
}
 
.text {
 
.text {
Line 91: Line 91:
 
.text p{
 
.text p{
 
font-size:20px;
 
font-size:20px;
 +
font-familt:"Lucida Sans Unicode",Times New Roman,Constantia,Gotham,Consolas;
 +
text-align:justify;
 
}
 
}
 
.normalsection .title img {
 
.normalsection .title img {
Line 116: Line 118:
 
margin-left:0;
 
margin-left:0;
 
}
 
}
 +
 
.text .firstpic h6{
 
.text .firstpic h6{
 
font-size:15px;
 
font-size:15px;
Line 129: Line 132:
 
line-height:18px;
 
line-height:18px;
 
text-indent:0px;
 
text-indent:0px;
 +
margin-left:40px;
 +
text-align:left;
 
}
 
}
 
.text .secondpic{
 
.text .secondpic{
Line 141: Line 146:
 
line-height:18px;
 
line-height:18px;
 
text-indent:0px;
 
text-indent:0px;
 +
margin-left:40px;
 +
text-align:left;
 
}
 
}
 
.text .secondpic h6{
 
.text .secondpic h6{
Line 149: Line 156:
 
line-height:17px;
 
line-height:17px;
 
}
 
}
 +
 
.text img{
 
.text img{
width:100%;
+
max-width:100%;
 +
width:auto;
 +
height:auto;
 
}
 
}
 
.downtext{
 
.downtext{
Line 171: Line 181:
 
<section class="normalsection">
 
<section class="normalsection">
 
       <div class="box_1">
 
       <div class="box_1">
         <img src="https://static.igem.org/mediawiki/2015/5/52/Nankai_Model_1_img.png" class="img0" alt=""/>
+
         <img src="https://static.igem.org/mediawiki/2015/5/52/Nankai_Model_1_img.png" class="img0">
 
       <div class="title">
 
       <div class="title">
 
           <h3>Bacteria scale</h3>
 
           <h3>Bacteria scale</h3>
Line 194: Line 204:
 
X = 3.055 (2.717, 3.393)</p>
 
X = 3.055 (2.717, 3.393)</p>
 
 
<p style="margin-top:15px">2. Goodness of fit:
+
<p class="gap">2. Goodness of fit:</br>
 
SSE: 1.99</br>
 
SSE: 1.99</br>
 
R-square: 0.9164</br>
 
R-square: 0.9164</br>
Line 206: Line 216:
  
 
<div class="box_2">
 
<div class="box_2">
         <img src="https://static.igem.org/mediawiki/2015/a/a7/Nankai_Model_2_img.png" class="img0" alt=""/>
+
         <img src="https://static.igem.org/mediawiki/2015/a/a7/Nankai_Model_2_img.png" class="img0">
 
       <div class="title">
 
       <div class="title">
 
           <h3>Product scale</h3>
 
           <h3>Product scale</h3>
Line 213: Line 223:
 
       </div>
 
       </div>
 
       <div class="text">
 
       <div class="text">
<p>
+
<p>In this equation, ‘X’ and ‘t’ are the bacteria scale and time. ‘P’ means the product. We can see the familiar ‘X’ and ‘t’, that is how we base the production on the bacteria growth. 'α' and 'β' indicates the proportion of the two processes. With these parameters, we can find out when is the most important part of time in the whole fermentation process. This is quite useful, because we can decide the length of fermentation and decide the timing to do some changes.
In this equation, ‘X’ and ‘t’ are the bacteria scale and time. ‘P’ means the product. We can see the familiar ‘X’ and ‘t’, that is how we base the production on the bacteria growth. 'α' and 'β' indicates the proportion of the two processes. With these parameters, we can find out when is the most important part of time in the whole fermentation process. This is quite useful, because we can decide the length of fermentation and decide the timing to do some changes.
+
 
</p>
 
</p>
 
<div class="firstpic">
 
<div class="firstpic">
 +
        <img src="https://static.igem.org/mediawiki/2015/f/fc/Nankai_modpic2.jpg">
 +
<h6>Fig.2 The original fitting curve of product formation</h6>
 +
<p>1. Fit Results:</br>
 +
(1)General model:</br>
 +
f(x) = C+(A*0.0255*3.055*exp(0.0754*x))/(3.055-0.0255+0.0255*exp(0.0754*x))+B*3.055/0.0754*log((3.055-0.0255+0.0255*exp(0.0754*x))/3.055)</br>
 +
(2)Coefficients (with 95% confidence bounds):</br>
 +
      A = 8392 (4254, 1.253e+04)</br>
 +
      B = -588.1 (-885.2, -291)</br>
 +
      C = -201.6 (-312.1, -91.16)</p>
  
 +
<p class="gap">2. Goodness of fit:</br>
 +
  SSE: 344.8</br>
 +
  R-square: 0.9165</br>
 +
  Adjusted R-square: 0.898</br>
 +
  RMSE: 6.19</p>
 
</div>
 
</div>
 
<div class="secondpic">
 
<div class="secondpic">
 
         <img src="https://static.igem.org/mediawiki/2015/9/97/Nankai_modchar2.png">
 
         <img src="https://static.igem.org/mediawiki/2015/9/97/Nankai_modchar2.png">
 
</div>
 
</div>
 +
<p class="downtext">Although this can reach a better R-square, our parameter β meet a negative number which should not happen. However, it can show that the product is mainly synthesized from the first part. Then we fit the data again with only the first part of our equation.</p>
 
       </div>
 
       </div>
 
</div>
 
</div>
  
 
<div class="box_1">
 
<div class="box_1">
         <img src="https://static.igem.org/mediawiki/2015/9/99/Nankai_Model_3_img.png" class="img0" alt=""/>
+
         <img src="https://static.igem.org/mediawiki/2015/9/99/Nankai_Model_3_img.png" class="img0">
 
       <div class="title">
 
       <div class="title">
 
           <h3>Substrate scale</h3>
 
           <h3>Substrate scale</h3>
Line 240: Line 264:
 
</div>
 
</div>
 
<div class="secondpic">
 
<div class="secondpic">
 +
<img src="https://static.igem.org/mediawiki/2015/2/25/Nankai_modpic3.jpg">
 +
<h6>Fig.3 The altered fitting curve of product formation</h6>
 +
<p>1. Fit Results:</br>
 +
(1)General model:</br>
 +
f(x) = C+(A*0.0255*3.055*exp(0.0754*x))/(3.055-0.0255+0.0255*exp(0.0754*x))</br>
 +
(2)Coefficients (with 95% confidence bounds):</br>
 +
A = 204 (115.1, 292.9)</br>
 +
C = 16.45 (4.215, 28.68)</p>
 +
<p class="gap">
 +
2. Goodness of fit:</br>
 +
SSE: 344.8</br>
 +
R-square: 0.9165</br>
 +
Adjusted R-square: 0.898</br>
 +
RMSE: 6.19</p>
 
</div>
 
</div>
 +
<p class="downtext">This one loses some goodness of fit, but the data is reasonable. Anyway, it shows that our product mainly comes from the growth process.</p>
 
       </div>
 
       </div>
 
</div>
 
</div>

Latest revision as of 23:09, 18 September 2015

Medigo Blue, free responsive template

Modeling

Your place: Home > Modeling

3 models are used to measure our project.

Bacteria scale

We use logistic equation to fit the mono-restrict factor growth of bacteria, and the bacteria scale itself is the factor.

dX/dt=Vmax*(1-X/Xmax)*X

In this equation, ‘X’ means the bacteria scale, it’s the function of‘t’, time. 'Vmax' represents the possible max relative growth speed of the bacteria . 'Xmax' is the upper limit of the growth. In this function, we can find out that the instantaneous growth speed is determined by the relative growth speed, upper limit of the growth, and the instantaneous scale. With time passing by, the scale grows larger, while the speed turns down.

Fig.1 The fitting curve of the growth of bacteria cells.

1. Fit Results:
(1)General model:
f(x) = X/(exp(-X*(C3 + V*x)) + 1)
(2)Coefficients (with 95% confidence bounds):
C3 = -1.248 (-1.962, -0.5334)
V = 0.07547 (0.02994, 0.121)
X = 3.055 (2.717, 3.393)

2. Goodness of fit:
SSE: 1.99
R-square: 0.9164
Adjusted R-square: 0.9045
RMSE: 0.3771

As the foundation of our modeling, the logistic model fits quite well with our data. It takes about 30 hours for the bacteria to reach the upper limit. According to the growth law, we can say that the highest growth speed is around 15h, when the scale is half of the maximum.

Product scale

We assume that our product comes from two parts, one is during the growth, and the other is through their livelihood.

dP/dt=α*dX/dt+β*X

In this equation, ‘X’ and ‘t’ are the bacteria scale and time. ‘P’ means the product. We can see the familiar ‘X’ and ‘t’, that is how we base the production on the bacteria growth. 'α' and 'β' indicates the proportion of the two processes. With these parameters, we can find out when is the most important part of time in the whole fermentation process. This is quite useful, because we can decide the length of fermentation and decide the timing to do some changes.

Fig.2 The original fitting curve of product formation

1. Fit Results:
(1)General model:
f(x) = C+(A*0.0255*3.055*exp(0.0754*x))/(3.055-0.0255+0.0255*exp(0.0754*x))+B*3.055/0.0754*log((3.055-0.0255+0.0255*exp(0.0754*x))/3.055)
(2)Coefficients (with 95% confidence bounds):
A = 8392 (4254, 1.253e+04)
B = -588.1 (-885.2, -291)
C = -201.6 (-312.1, -91.16)

2. Goodness of fit:
SSE: 344.8
R-square: 0.9165
Adjusted R-square: 0.898
RMSE: 6.19

Although this can reach a better R-square, our parameter β meet a negative number which should not happen. However, it can show that the product is mainly synthesized from the first part. Then we fit the data again with only the first part of our equation.

Substrate scale

Bacteria use the provided carbon source to propagate, maintain their livelihood and synthesize the product.

dS/dt=-γ*dX/dt-δ*X-ε*dP/dt

In this equation, 'S' is the substrate, 'γ', 'δ',and 'ε' are the ratio of the three outlets. Our genetic operation is aimed to make the bacteria put more energy into the product. In a way, these parameters can show whether our strategies are effective or not.

Fig.3 The altered fitting curve of product formation

1. Fit Results:
(1)General model:
f(x) = C+(A*0.0255*3.055*exp(0.0754*x))/(3.055-0.0255+0.0255*exp(0.0754*x))
(2)Coefficients (with 95% confidence bounds):
A = 204 (115.1, 292.9)
C = 16.45 (4.215, 28.68)

2. Goodness of fit:
SSE: 344.8
R-square: 0.9165
Adjusted R-square: 0.898
RMSE: 6.19

This one loses some goodness of fit, but the data is reasonable. Anyway, it shows that our product mainly comes from the growth process.

Medigo Blue, free responsive template