Difference between revisions of "Team:Northeastern Boston/Project"

(Blanked the page)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
{{Northeastern_Boston/CSS}}
 
{{Northeastern_Boston/Javascript}}
 
<html>
 
<script src="//use.typekit.net/jdw6eyl.js"></script>
 
<script>try{Typekit.load();}catch(e){}</script>
 
<body>
 
<div class='wrapper'>
 
  <div id='sidebar'>
 
    <div id='bar_title' class='title'><a href="https://2015.igem.org/Team:Northeastern_Boston" style="font-color:white">
 
      Northeastern</a>
 
    </div>
 
    <ul class='nav'>
 
      <li>
 
        <a href="https://2015.igem.org/Team:Northeastern_Boston">Home</a>
 
      </li>
 
      <li>
 
      <a href="https://2015.igem.org/Team:Northeastern_Boston/team">Team</a>
 
      </li>
 
      <li>
 
        <a class='active'>Project</a>
 
      </li>
 
      <div class='sub-nav__container'>
 
      <li class='sub-nav__parent'>
 
        <a>Parts</a>
 
      </li>
 
      <div class='sub-nav__children hidden'>
 
      <li class='sub-nav__child'>
 
        <a href="https://2015.igem.org/Team:Northeastern_Boston/BasicParts">Basic & Composite</a>
 
      </li>
 
      <li class='sub-nav__child'>
 
        <a href="https://2015.igem.org/Team:Northeastern_Boston/ExpressionPlasmid">Expression Plasmid</a>
 
      </li>
 
      </div>
 
    </div>
 
      <div class='sub-nav__container'>
 
      <li class='sub-nav__parent'>
 
        <a>Notebook</a>
 
      </li>
 
      <div class='sub-nav__children hidden'>
 
      <li class='sub-nav__child'>
 
        <a href="https://2015.igem.org/Team:Northeastern_Boston/notebook">Protocols</a>
 
      </li>
 
      <li class='sub-nav__child'>
 
        <a href="https://2015.igem.org/Team:Northeastern_Boston/Workflow">Workflow</a>
 
      </li>
 
      </div>
 
    </div>
 
      <li>
 
        <a href="https://2015.igem.org/Team:Northeastern_Boston/Attributions">Attributions</a>
 
      </li>
 
  
      <div class='sub-nav__container'>
 
      <li class='sub-nav__parent'>
 
        <a>Human Practices</a>
 
      </li>
 
      <div class='sub-nav__children hidden'>
 
      <li class='sub-nav__child'>
 
        <a href="https://2015.igem.org/Team:Northeastern_Boston/HumanPractices">Outreach</a>
 
      </li>
 
      <li class='sub-nav__child'>
 
        <a href="https://2015.igem.org/Team:Northeastern_Boston/Open_Source">Open Source</a>
 
      </li>
 
      <li class='sub-nav__child'>
 
        <a href="https://2015.igem.org/Team:Northeastern_Boston/Jurassic_Wet_Lab">Jurassic Wet Lab</a>
 
      </li>
 
      </div>
 
    </div>
 
      <li>
 
      <a href="https://2015.igem.org/Team:Northeastern_Boston/safety">Safety</a>
 
      </li>
 
     
 
      <li>
 
      <a href="https://2015.igem.org/Team:Northeastern_Boston/measurement">Measurement</a>
 
      </li>
 
     
 
    </ul>
 
  </div>
 
  <div class='content'>
 
  <div id='page-header__notebook' class='page-header'>
 
  <h1 class="page-header__title" align="left" style="border-width:0">OUR PROJECT</h1>
 
  </div>
 
    <div class='Notebook'>
 
 
      <div class="minimal-dropdown__container">
 
      <div class="minimal-dropdown__header">
 
      <h2 class="minimal-dropdown__title">Overview</h2>
 
      <a class='minimal-dropdown__arrow'></a>
 
      </div>
 
      <div class="minimal-dropdown__content hidden">
 
      <p><i>"Dr. George D. Yancopoulos, chief scientific officer of Regeneron,
 
      said the crisis had pointed up shortcomings in biodefense. “Nobody is
 
      really prepared,” he said. “Nobody in the world has rapid response
 
      capabilities.”</i>—New York Times, January 2015</p>
 
 
      <p>Humans need improved methods for making therapeutic antibodies.
 
      Producing these complex proteins is hard but important; the 2014 Ebola
 
      Outbreak illustrates the urgency. In response, we propose the use of
 
      microalgae as a widescale antibody production platform. Microalgae have
 
      all the benefits of higher-level plants but scale faster and are easier
 
      to process. Furthermore, from a holistic point of view, microalgae are an
 
      ideal chassis; their primary carbon source is CO<sub>2</sub> and they are
 
      unlikely to harbor mammalian pathogens.</p>
 
      </div>
 
      </div>
 
 
      <div class="minimal-dropdown__container">
 
      <div class="minimal-dropdown__header">
 
      <h2 class="minimal-dropdown__title">The Need</h2>
 
      <a class='minimal-dropdown__arrow'></a>
 
      </div>
 
      <div class="minimal-dropdown__content hidden">
 
 
      <p><i>"I rate the chance of a nuclear war within my lifetime as being
 
      fairly low. I rate the chance of a widespread epidemic, far worse than
 
      Ebola, in my lifetime, as well over 50 percent."</i> —Bill
 
      Gates</p><img id="outbreakgif" src=
 
      "http://giant.gfycat.com/SaltyElectricAmazonparrot.gif" style=
 
      "width:100%">
 
 
      <p id="outbreakgifdesc"></p>Epidemic spread modeling by Brockmann's group
 
      at Humbolt University. (http://rocs.hu-berlin.de/). This model shows the
 
      spread of a theoretical outbreak of a particularly contagious pathogen in
 
      Atlanta, GA. The spread is over 60 days.<br>
 
 
      <p></p>
 
 
      <p>With the most recent Ebola Outbreak, over 28 thousand were infected by
 
      the deadly pathogen and an estimated 11 thousand died. Meanwhile, a
 
      potent anti-Ebola antibody cocktail, ZMapp, was going through preclinical
 
      studies. In a study where 18 heavily Ebola infected monkeys treated with
 
      ZMapp, all 18 survived, including several in the hemorrhaging stage of
 
      the disease. Given the timing and urgent need, ZMapp was approved for use
 
      in humans. One of the first patients treated was Dr. Kent Brantly, the
 
      American missionary worker who went on to recover from the disease.</p>
 
 
      <p>Antibodies are unique and powerful tools for eliminating pathogens.
 
      They do so by both neutralization—the hindrance of function by surface
 
      binding—and complementation—calling in the immune system. Unfortunately,
 
      ZMapp’s utility was hindered by lack of supply, not an apparent inability
 
      to neutralize the virus (as illustrated by the Rhesus model). Only 7
 
      doses were available throughout the Ebola Outbreak, despite infection
 
      rates in the thousands. Ultimately, it represents a problem, or complete
 
      lack thereof, for rapid antibody production capabilities.</p>
 
 
      <p>A proposed solution was the tobacco plant. A relatively
 
      well-understood and engineered organism, it was the method for making
 
      ZMapp. Producers inject plant leaves with agrobacterium containing the
 
      DNA for the therapeutic antibody. The plants grow and the antibody is
 
      purified from the plant cell lysate. In theory, this is a quick and
 
      inexpensive method for rapidly producing lots of antibody, dependent upon
 
      arable land rather than high-sterility CHO-vats. In practice, it is
 
      not.</p>
 
    </div>
 
      </div>
 
 
      <div class="minimal-dropdown__container">
 
      <div class="minimal-dropdown__header">
 
      <h2 class="minimal-dropdown__title">Some Solutions</h2>
 
      <a class='minimal-dropdown__arrow'></a>
 
      </div>
 
      <div class="minimal-dropdown__content hidden">
 
      <p>It might one day be possible to make drugs entirely without cells.
 
      Protein-producing gels or other systems could produce drugs economically
 
      in vitro avoiding the inherent biological complexity and metabolic needs
 
      of living organisms. [<a href=
 
      "http://www.nature.com/nmat/journal/v8/n5/pdf/nmat2419.pdf" target=
 
      "_blank">1,</a> <a href=
 
      "http://www.sciencedirect.com/science/article/pii/S1389172314001509"
 
      target="_blank">2</a>]</p>
 
 
      <p>It might, alternatively, be possible to inject the mRNA of a desired
 
      antibody directly, thereby offloading the antibody production to the
 
      patient rather than delivering a bolus of externally produced antibody.
 
      Moderna, for example, has developed synthetic mRNA that codes for
 
      polypeptides while avoiding immune-surveillance (and therefore
 
      elimination). It’s currently unclear how this mRNA will be targeted to
 
      delivery into B cells, and for how long the B cells will continue to
 
      produce antibodies. This approach, offloading manufacturing of antibodies
 
      to the patient, has been extensively researched in the context of AIDS.
 
      [<a href="http://www.ncbi.nlm.nih.gov/pubmed/8864752" target=
 
      "_blank">3</a>, <a href="http://www.mdpi.com/1999-4915/6/2/428/html"
 
      target="_blank">4</a>, <a href=
 
      "http://www.nature.com/ni/journal/v14/n1/full/ni.2480.html" target=
 
      "_blank">5</a>]</p>
 
 
      <p>In might be possible to design synthetic bacteria (like Synlogic) for
 
      the gut that produce Nanobodies (small enough to be produced in bacteria
 
      and lacking complex do-sulfide bonds). These pathogen targeting
 
      nanobodies might prove capable of reaching the circulatory system after
 
      being turned on by an exogenous transcription factor, however, these
 
      nanobodies might still face the complication of improper glycosylation
 
      and immune clearance. [<a href=
 
      "http://europepmc.org/abstract/med/19876789" target="_blank">6</a>]</p>
 
 
      <p>Despite the volume of researchers working on futuristic solutions,
 
      recombinant antibodies are known to work. They are less theoretical and
 
      more a problem of logistics. And logistically, antibodies from Chinese
 
      hamster ovary cells or tobacco plants never materialized during the 2014
 
      Ebola Outbreak. So the question becomes: can microalgae produce properly
 
      folded antibodies at a high enough concentration and at a cheap enough
 
      cost to warrant their use as a widescale antibody production platform? We
 
      believe it’s worth further investigation and will present the possible
 
      long-term implementation of microalgae production facilities.</p>
 
      </div>
 
      </div>
 
 
      <div class="minimal-dropdown__container">
 
      <div class="minimal-dropdown__header">
 
      <h2 class="minimal-dropdown__title">A Green Safety Net</h2>
 
      <a class='minimal-dropdown__arrow'></a>
 
      </div>
 
      <div class="minimal-dropdown__content hidden">
 
      <p>Within each of us (health and medication depending) is an adaptive
 
      immune system. A major cell in this system is the B Cell. Immunocompetent
 
      B cells are covered in B cell receptors (BCRs). These BCRs respond to
 
      non-self antigens. When a foreign antigen binds to a BCR, it activates
 
      the B cell to turn into plasma B cells, dedicated producers of specific
 
      antibodies against a portion of the antigen that triggered the
 
      response.</p>
 
 
      <p>Some of the plasma B cells enter secondary lymphoid organs, otherwise
 
      known as “germinal centers.” Here, B cells undergo rapid mutation so that
 
      the selected-for plasma B cell population produces higher affinity
 
      antibodies. The resulting plasma B cells begin leave the germinal center
 
      to pump out high levels of antibody into the bloodstream. [<a href=
 
      "https://www.rndsystems.com/research-area/b-cells" target=
 
      "_blank">7]</a></p>
 
 
      <p>This is what the human species lacks on a macro-level infrastructure.
 
      Hospitals and care-centers act as an innate response, responding in the
 
      emergence of a contagion to quarantine the sick and provide nourishment.
 
      They are not designed with the capability to rapidly adapt and attack the
 
      pathogen. For good reason, drugs for human treatment undergo rigorous FDA
 
      review before approval. The average inception to market timeline for an
 
      FDA approved drug is 12 years (note: this is after the drug has been
 
      developed). This is too long for rapid drug turnaround and represents a
 
      significant threat to human health.</p><img id="outbreakgif" src=
 
      "https://static.igem.org/mediawiki/2015/6/61/Algae_distribution_map-01.jpg"
 
      style="width:100%">
 
 
      <p id="outbreakgifdesc"></p>A hypothetical map of distributed
 
      algae-antibody production facilities. Orange dots are locations of
 
      existing facilities that could be repurposed. Yellow dots are
 
      hypothetical potential power plant algae hybrid facilities. They are
 
      smaller in scale but repurposable in a time of need. Green dots are
 
      potential large sized facilities. These too could produce commodity
 
      goods, like food for livestock or subsidized biofuel, until needed
 
      antibody.<br>
 
 
      <p></p>
 
 
      <p>In industrialized countries with significant carbon taxes, like the UK
 
      and Australia, microalgae facilities might become commonplace alongside
 
      power plants. Sapphire Energy, Sunomix, and Solazyme have demonstrated
 
      the market potential of microalgae products. It would be strategic to
 
      further distribute algae plants near heavily populated areas. Were a
 
      pandemic to occur, these facilities could expunge their
 
      commodity-producing microalgae and replace it with a high antibody
 
      producing strain of microalgae, like recombinant <i>Chlamydomonas
 
      reinhardtii</i> or <i>Phaeodactylum tricornutum</i>.</p>
 
      </div>
 
      </div>
 
 
      <div class="minimal-dropdown__container">
 
      <div class="minimal-dropdown__header">
 
      <h2 class="minimal-dropdown__title">Cost/Benefit</h2>
 
      <a class='minimal-dropdown__arrow'></a>
 
      </div>
 
      <div class="minimal-dropdown__content hidden">
 
      <p>The true benefit of using microalgae for antibody production is the
 
      lower fixed cost of facilities.</p><img id="outbreakgif" src=
 
      "https://static.igem.org/mediawiki/2015/8/89/Volume_Relative_Algae_Facility.jpg"
 
      style="width:80%">
 
 
      <p></p><br>
 
 
      <p></p>
 
 
      <p>CHO facilities, on average, cost around $200M for 80,000L. A similarly
 
      sized algae facility at 15,000L would cost an estimated $1.3M. With
 
      economies of scale, algae production facilities become significantly
 
      cheaper. $1B would be a 14 Billion Liter algae farm (5,500 acres)
 
      according to one techno-economic analysis (Rogers, 2013. Algae
 
      Research).</p><img src=
 
      "https://static.igem.org/mediawiki/2015/b/b1/Producitivty_algae_graph.png"
 
      style="width:80%">
 
 
      <p>The biggest challenge for microalgae will be improved productivity.
 
      Because of fixed and variable costs, microaglae will not need to be 100%
 
      as productive as CHO's (extremely unlikely in the near-term, given the
 
      amount of research and time invested in CHO's), however, they will need
 
      to improve 1-2 magnitudes over current levels. CHOs are far and beyond
 
      the most efficient antibody producers, with some strains now exceeding
 
      grams of product per liter of culture media. Furthermore, they are
 
      entrenched in the industry: 61 of the 90 therapeutic proteins produced in
 
      mammalian cells come from CHO's (Rader, 2015. Bioprocessing Journal).
 
      Furthermore, of the 174 recombinant FDA approved drugs on the market,
 
      only one is made by plant cells (Elelyso from carrot cell
 
      culture).</p><img src=
 
      "https://static.igem.org/mediawiki/2015/5/5d/Max_density_algae.png" style=
 
      "width:80%">
 
 
      <p>An encouraging number is maximum biomass. Microalgae can quickly reach
 
      high densities, with some culture conditions allowing biomass in excess
 
      of 10g/L. With a higher cellular density, and significantly larger scales
 
      for the same investment, microalgae may soon contend with CHO's.</p>
 
      </div>
 
      </div>
 
 
      <p>Sources: <a href=
 
      "https://static.igem.org/mediawiki/2015/4/46/Screen_Shot_2015-09-10_at_7.44.36_PM.png"
 
      target="_blank">Facility Volume vs Cost</a>, <a href=
 
      "https://static.igem.org/mediawiki/2015/9/96/Screen_Shot_2015-09-10_at_7.44.56_PM.png"
 
      target="_blank">Productivity</a>, and <a href=
 
      "https://static.igem.org/mediawiki/2015/e/e1/Screen_Shot_2015-09-10_at_7.45.03_PM.png"
 
      target="_blank">Cell Density</a></p>
 
    </div>
 
  </div>
 
  </div>
 
</body>
 
</html>
 

Latest revision as of 02:22, 18 September 2015