Difference between revisions of "Team:TCU Taiwan/Project/Overview"

Line 41: Line 41:
 
     <td>
 
     <td>
 
<p align="justify" ><span style="font-family:Calibri;line-height: 150%;"><font size="5">
 
<p align="justify" ><span style="font-family:Calibri;line-height: 150%;"><font size="5">
Antimicrobial peptide (AMPs) has an extensive ability in disinfect. Unlike antibiotics, AMPs use chargeability puncture the cell membrane to kill the bacteria therefore by passing bacterial antibiotic drug resistance mechanisms. <a href="https://2015.igem.org/Team:TCU_Taiwan/Project/Overview#tcu_references_1">[1]</a> Two kinds of AMPs were selected as our reagents: Epinecidin-1 and Signiferin. </br><br>
+
To achieve our goal we incorporated antimicrobial peptides (AMPs) into our medical dressing. AMPs, are stable peptide that have extensive ability in bactericidal effects. Unlike antibiotics, AMPs can puncture the cell membrane to kill the bacteria therefore bypassing bacterial antibiotic drug resistance mechanisms. <a href="https://2015.igem.org/Team:TCU_Taiwan/Project/Overview#tcu_references_1">[1]</a> Besides, the peptides also have ability to help skin recovered. <a href="https://2015.igem.org/Team:TCU_Taiwan/Project/Overview#tcu_references_2"> [2]</a>After reading numerous of research articles, we selected two kinds of AMPs: Signiferin and Epinecidin-1 as our reagents.<br><br>
      Epinecidin-1 is a peptide comes from <I>Epinephelus coioides</I>, and Signiferin is comes from <I>Crinia signifera</I>. Both of them are extracted from the skin mucus. In addition, epinecidin-1 has the ability to help wounds healing and has been proven by animal studies. <a href="https://2015.igem.org/Team:TCU_Taiwan/Project/Overview#tcu_references_2"> [2]</a> Moreover, signiferin have great ability in disinfect Methicillin-Resistant <I>Staphylococcus aureus</I> (S. aureus), and had already been kindly proved by the TU-Delft 2013 iGEM team. <a href="https://2015.igem.org/Team:TCU_Taiwan/Project/Overview#tcu_references_3">[3]</a>Combining these two properties, we believe that can alleviate the serious problem of skin injury.</br><br>
+
 
      To produce AMPs and control AMPs expression, we apply the Lac operon and ligate the DNA of signal peptide into E. <I>coli</I> to help AMPs secret into culture medium. <a href="https://2015.igem.org/Team:TCU_Taiwan/Project/Overview#tcu_references_4">[4][5]</a> Next, to prove that AMPs have the extensive ability in disinfection and helps the wound healing, selected cells and bacteria were tested <I>in vitro</I>, including the squamous epithelial cell and endothelial cell of the blood vessel and MRSA, and mice were used <I>in vivo</I>. Ultimately, create a wound dressing based on the above procedure.</br><br>
+
 
      An excellent dressing made of AMPs will make a fast recovery.</br>
+
 
 +
Signiferin is a peptide came from the skin mucus of Crinia signifera. It demonstrated effectiveness in killing Methicillin-Resistant Staphylococcus aureus (MRSA), and had been kindly proved by the TU-Delft 2013 iGEM team. Epinecidin-1 is a peptide came from the skin mucus of Epinephelus coioides. It has ability to help wound healing and has been proven by animal studies, and was selected as an additional reagent. <a href="https://2015.igem.org/Team:TCU_Taiwan/Project/Overview#tcu_references_3">[3]</a>Combining these two properties, we believe that can alleviate the serious problem of skin injury.<br><br>
 +
 
 +
      To control the AMPs expression and secretion, the Lac operon was used and treated signal peptide in our system. Helping peptides secret into culture medium.<a href="https://2015.igem.org/Team:TCU_Taiwan/Project/Overview#tcu_references_4">[4][5]</a> After purification of the peptide we will be testing the effectiveness of our synthetic AMPs. We will test macro-dilution of MRSA and in vitro wound healing assay for epithelial cells line (HaCaT) and micro vascular endothelial cells (HMEC-1). After in vitro test we will do in vivo test in mice to see its effectiveness on the wound. Out goal is to create a wound dressing that is effective in inhibiting bacterial growth and assisting wound healing process.<br>
 
<br>
 
<br>
 
</font>
 
</font>

Revision as of 18:13, 31 August 2015



AMP. coli

To achieve our goal we incorporated antimicrobial peptides (AMPs) into our medical dressing. AMPs, are stable peptide that have extensive ability in bactericidal effects. Unlike antibiotics, AMPs can puncture the cell membrane to kill the bacteria therefore bypassing bacterial antibiotic drug resistance mechanisms. [1] Besides, the peptides also have ability to help skin recovered. [2]After reading numerous of research articles, we selected two kinds of AMPs: Signiferin and Epinecidin-1 as our reagents.

Signiferin is a peptide came from the skin mucus of Crinia signifera. It demonstrated effectiveness in killing Methicillin-Resistant Staphylococcus aureus (MRSA), and had been kindly proved by the TU-Delft 2013 iGEM team. Epinecidin-1 is a peptide came from the skin mucus of Epinephelus coioides. It has ability to help wound healing and has been proven by animal studies, and was selected as an additional reagent. [3]Combining these two properties, we believe that can alleviate the serious problem of skin injury.

To control the AMPs expression and secretion, the Lac operon was used and treated signal peptide in our system. Helping peptides secret into culture medium.[4][5] After purification of the peptide we will be testing the effectiveness of our synthetic AMPs. We will test macro-dilution of MRSA and in vitro wound healing assay for epithelial cells line (HaCaT) and micro vascular endothelial cells (HMEC-1). After in vitro test we will do in vivo test in mice to see its effectiveness on the wound. Out goal is to create a wound dressing that is effective in inhibiting bacterial growth and assisting wound healing process.

  Antimicrobial peptide

• Epinecidin-1:

1. From the skin mucus of Epinephelus coioides a kind of fish.

2. Has function of killing bacteria.

3. In addition, it has the ability to help wounds healing and has been proven by animal studies.


•  Signiferin:

1. From the skin mucus of Crinia signifera a kind of tree frog.

2. Have function of killing bacteria.

3. Have great ability in disinfect Methicillin-Resistant Staphylococcus aureus (MRSA).

4. Had already been kindly proved by the 2013 TU-Delft iGEM team.


Signal peptide:

1. Helps AMPs to secret out of E. coli.

2. From Streptomyces lividans to trasport chitinase C to secretion system, which has been proven to work in E.coli

by reference.


Wound dressing:

Based on AMPs to develop into a potential material of wound dressing.

References


[1] Lai Y, Gallo RL. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 2009 Mar; 30(3):131-41. doi: 10.1016/j.it.2008.12.003. Epub 2009 Feb 13.

[2] Huang HN, Rajanbabu V, Pan CY, Chan YL, Wu CJ, Chen JY. Use of the antimicrobial peptide Epinecidin-1 to protect against MRSA infection in mice with skin injuries. Biomaterials. 2013 Dec; 34(38):10319-27. doi: 10.1016/j.biomaterials.2013.09.037. Epub 2013 Sep 27.

[3] Maselli VM, Bilusich D, Bowie JH, Tyler MJ. Host-defence skin peptides of the Australian Streambank Froglet Crinia riparia: isolation and sequence determination by positive and negative ion electrospray mass spectrometry. Rapid Commun Mass Spectrom. 2006; 20(5):797-803.

[4] Tokuyasu K, Kaneko S, Hayashi K, Mori Y. Production of a recombinant chitin deacetylase in the culture medium of Escherichia coli cells. FEBS Lett. 1999 Sep 10; 458(1):23-6.

[5] Fujii T, Miyashita K. Multiple domain structure in a chitinase gene (chiC) of Streptomyces lividans. J Gen Microbiol. 1993 Apr; 139(4):677-86.








             
Flag Counter
Contact us
tcutaiwan@gmail.com
No.701, Sec. 3, Zhongyang Rd. Hualien 97004, Taiwan