Difference between revisions of "Team:UESTC Software/Description.html"

(Undo revision 244874 by Dou (talk))
(Undo revision 244764 by Dou (talk))
Line 3: Line 3:
 
<meta charset="UTF-8">
 
<meta charset="UTF-8">
 
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, minimum-scale=1.0, user-scalable=no" />
 
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, minimum-scale=1.0, user-scalable=no" />
<title>Notebook</title>
+
<title>Description</title>
<link rel="stylesheet" href="https://2015.igem.org/Template:UESTC_Software/CSS?action=raw&ctype=text/css">
+
<link rel="stylesheet" href="https://2015.igem.org/Template:UESTC_Software/CSS?action=raw&ctype=text/css">
<link rel="stylesheet" href="https://2015.igem.org/Template:UESTC_Software/wen_css?action=raw&ctype=text/css">
+
        <link rel="stylesheet" href="https://2015.igem.org/Template:UESTC_Software/divide_wen_css?action=raw&ctype=text/css">
<script src="https://2015.igem.org/Template:UESTC_Software/headjs?action=raw&ctype=text/javascript"></script>
+
        <link rel="stylesheet" href="https://2015.igem.org/Template:UESTC_Software/wen_css?action=raw&ctype=text/css">
 +
        <script src="https://2015.igem.org/Template:UESTC_Software/headjs?action=raw&ctype=text/javascript"></script>
 
</head>
 
</head>
 
<body>
 
<body>
Line 20: Line 21:
 
<a href="https://2015.igem.org/Team:UESTC_Software">HOME</a>
 
<a href="https://2015.igem.org/Team:UESTC_Software">HOME</a>
 
</li>
 
</li>
<li>
+
<li class="choose">
 
<a class="" href="javascript:void(0)">PROJECT<br/><i class="iconfont">&#xe60d;</i></a>
 
<a class="" href="javascript:void(0)">PROJECT<br/><i class="iconfont">&#xe60d;</i></a>
 
<ul id="menu_pro" class="dou_divide_nav_second clearfix">
 
<ul id="menu_pro" class="dou_divide_nav_second clearfix">
Line 28: Line 29:
 
<li><a href="https://2015.igem.org/Team:UESTC_Software/Modeling.html">Modeling</a></li>
 
<li><a href="https://2015.igem.org/Team:UESTC_Software/Modeling.html">Modeling</a></li>
 
                                                 <li><a href="https://2015.igem.org/Team:UESTC_Software/Software.html">Software</a></li>
 
                                                 <li><a href="https://2015.igem.org/Team:UESTC_Software/Software.html">Software</a></li>
                                                 <li><a href="https://2015.igem.org/Team:UESTC_Software/User guide.html">User guide</a></li>
+
                                                 <li><a href="https://2015.igem.org/Team:UESTC_Software/User-guide.html">User Guide</a></li>
 
</ul>
 
</ul>
 
</li>
 
</li>
<li class="choose">
+
<li>
 
<a href="javascript:void(0)">TEAM<br/><i class="iconfont">&#xe60d;</i></a>
 
<a href="javascript:void(0)">TEAM<br/><i class="iconfont">&#xe60d;</i></a>
 
<ul id="menu_team" class="dou_divide_nav_second">
 
<ul id="menu_team" class="dou_divide_nav_second">
Line 42: Line 43:
 
</li>
 
</li>
 
<li>
 
<li>
<a href="https://2015.igem.org/Team:UESTC_Software/Practices">HUMAN<br/>PRACTICE<br/></a>
+
<a href="https://2015.igem.org/Team:UESTC_Software/Practices">HUMAN<br/>PRACTICE</a>
 
<!--<ul id="menu_hum" class="dou_divide_nav_second">
 
<!--<ul id="menu_hum" class="dou_divide_nav_second">
 
<li><a href="https://2015.igem.org/Team:UESTC_Software/Game-human_practice.html">Game</a></li>
 
<li><a href="https://2015.igem.org/Team:UESTC_Software/Game-human_practice.html">Game</a></li>
Line 61: Line 62:
 
</nav>
 
</nav>
 
</header>
 
</header>
<section class="cd_half_section" id="c_h_s_attr">
+
<h1>Attributions</h1>
+
<div class="cd_half_section" id="c_h_s_desc">
</section>
+
<h1>Description</h1>
<div class="attr-main">
+
</div>
                <ul class="attr-oth">
+
<div class="safetyDiv">
<li class="attr-li clearfix">
+
<div class="QandA">
<h2>Assignment</h2>
+
<h3 class="des_h3">Background </h3>
<ul class="pho-show">
+
<p>It is widely accepted that building a minimal artificial cell serves as a critical role in synthetic biology. A synthetic minimal cell will supply a proper chassis to integrate functional synthetic parts, devices and systems with functions which can meet different purposes and requirements <sup>[1]</sup>. </p>
                                        <li class="clearfix">
+
                        <p>More and more researchers have taken the design and construction of a functional minimal genome into great consideration when assembly such a minimal artificial cell or chassis, since all the cell functions can be dates back to genome. For the minimal genome, it represents the infrastructure of a minimal cell and could be taken as the foundation for synthetic biology <sup>[1]</sup>. It is well-known that minimal genome can be used for chassis cell while applying to the industrial manufacture and synthetic biology <sup>[2]</sup>. On one hand, reduced cell can transfer resource into specific products needed by human more effective and can reduce the waste of resource as well. For another, it is much easier for the extraction and purification of target products <sup>[3]</sup>.</p>
<img src="/wiki/images/4/46/UESTC_Software_Dyc1.jpg" class="stamp"/>
+
                        <p>The works for evaluating the size and content of minimal genome have been carried out through comparative and experimental approaches. Mushegian and Koonin <sup>[4]</sup> pioneered the work of determining a minimal gene set by comparative genomic approach (bottom-up approach and top-down approach). They derived such a repertoire for the first minimal gene set with 256 conserved genes based on the first two completely sequenced small bacterial genomes, Mycoplasma genitalium and Haemophilus influenza, which belong to two ancient bacterial lineages, i.e., Gram-positive and Gram-negative bacteria, respectively. Later,  based on comprehensively comparing the published data from comparative genomics and experiments, Gil <sup>[5]</sup> and his colleagues determined the core of a minimal bacterial gene set with 206 genes, and reconstructed a minimal metabolic machinery necessary to sustain life <sup>[6]</sup>. </p>
                                        <div class="">
+
                        <p>In practice, the comparative-genomic approach to minimal gene-set derivation is based on the key evolutionary notion of orthology, and the resulting sets of genes should approximate those of ancestral life-forms <sup>[6]</sup>. </p>
                                              <p>Duan Yaocong.</p>
+
                        <p>It is predictable that with the increasing number of chromosomes from different organisms, the number of orthologous genes would descend. Analysis of about 100 genomes shows that only 63 genes are ubiquitous. That may be caused by the condition, when the genes which perform the same function in two species are non-orthologous, then the essential gene will be missed <sup>[4]</sup>. However, the researchers had to adopt the “ubiquitous” strategy just because at that time only a few bacterial genomes had been completely sequenced.</p>
                                              <p class="long_des">Team leader. Responsible for team management and software project.</p>
+
</div>
                                        </div>
+
<div class="QandA">
                                        </li>
+
<h3 class="des_h3">Overview</h3>
                                        <li class="clearfix">
+
<p>In recent years, dozens of bacteria have obtained genome scale essentiality data with experimental validations and they can provide us the feasibility to develop a novel strategy of minimal gene set extraction from the experimental essentiality data. Following the comparative genomic approach (bottom-up method), we developed the “half-retaining”, by comparing the experimentally-determined essential genes among various reference species. This strategy <sup>[7]</sup> retains the essential genes persisting in more than half of the reference genomes to obtain conserved essential genes. Conventional methods <sup>[4]</sup> which retain genes persistent in all reference species as a minimal gene set suffer from the disadvantage that the number of orthologous genes would drop off with the increase of the number of chromosomes from different organisms. In contrast, we overcomes this issue in principle and results in a robust gene set, only if the reference species are randomly selected and cover all the primary phylogenetic lineages. In addition, our source data is derived from the initial set of experimentally-determined essential genes, which ensures our results are not redundant. Hence, our results represent that the size and content of minimal gene set are stable and convergent. </p>
<img src="/wiki/images/e/eb/UESTC_Software_Zwb1.jpg" class="stamp"/>
+
</div>
                                        <div class="">
+
<div class="QandA">
                                              <p>Zou Wenbo. </p>
+
<h3 class="des_h3">Virtues</h3>
                                              <p>Team leader and iOS programmer. </p>
+
<p>To construct an updated minimal gene set of bacteria, we renovate systematically the conventional process in the following two points. Firstly, it starts from the experimentally-determined essential genes and thus the result is more reliable and accurate. Secondly, we developed a new strategy called half-retaining to identify essential genes conserved among over half of the reference species, which made the obtained minimal gene set more robust.</p>
                                        </div>
+
</div>
                                        </li>
+
<div class="QandA">
                                        <li class="clearfix">
+
<h3 class="des_h3">Innovation </h3>
<img src="/wiki/images/b/b3/UESTC_Software_Yx1.jpg" class="stamp"/>
+
<p>For innovation, our strategy, half-retaining, has blazed a new trail in three aspects. Based on the increasingly accumulated number of essential gene experimentally determined by genome scale gene in-activation way, we together with instructors’ groups proposed our strategy, half-retaining, to solve this problem <sup>[7]</sup>. Primarily, we combined comparative genomics approach with data (essential genes) from experiments (gene inactivation) instead of using theoretical method alone to construct a more complete minimal gene set than previous. In the second place, the minimal gene set that we defined would be confirmed according to user requirements and users’ purpose, rather than the only gene set in the previous. At last, the ubiquitous genes of minimal gene set determined by Koonin suffers from the flaw that enlarging the number of reference species would reduce the amount of genes retained in the minimal gene set. However, our half-retaining strategy overcomes this problem and results in a robust gene set. The number of selected genes is tending towards stability with the increase reference species by our strategy. </p>
                                        <div class="">
+
</div>
                                              <p>Yang Xue.</p>
+
                <div class="QandA wenx_div">
                                              <p>Wiki document and presentation.</p>
+
<p>[1] Juhas M. On the road to synthetic life: the minimal cell and genome-scale engineering. Crit Rev Biotechnol, 2015, July 7. [Epub head of print]</p>
                                        </div>
+
<p>[2] Juhas M, Eberl L, Church GM. Essential genes as antimicrobial targets and cornerstones of synthetic biology. Trends Biotechnol, 2012, 30(11)601-7.</p>
                                        </li>
+
<p>[3] Foley, P.L. and Shuler, M.L. Considerations for the design and construction of a synthetic platform cell for biotechnological applications. Biotechnol Bioeng, 2010, 105(1), 26-36.</p>
                                        <li class="clearfix">
+
<p>[4] Mushegian AR, Koonin EV. A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc Natl Acad Sci USA, 1996, 93(19):10268-73. </p>
<img src="/wiki/images/a/a5/UESTC_Software_Mhh1.jpg" class="stamp"/>
+
<p>[5] Gil R, Silva FJ, Pereto J, Moya A. Determination of the core of a minimal bacterial gene set. Microbiol Mol Biol Rev, 2004, 68(3): 518-37.</p>
                                        <img src="/wiki/images/f/f3/UESTC_Software_Wyj1.jpg" class="stamp"/>
+
<p>[6] Koonin EV. Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol, 2003, 1(2):127-36.</p>
                                        <div class="">
+
<p>[7] Zhang LY, Chang SH, Wang J. How to make a minimal genome for synthetic minimal cell. Protein Cell. 2010, 1(5):427-34</p>
                                              <p>Mai Huahe and Wen Yuji. </p>
+
                         <p>[8] Yuan-Nong Ye, Bin-Guang Ma, Chuan Dong, Hong Zhang, Ling-Ling Chen and Feng-Biao Guo. A novel bacteria minimal gene set and neo-construction of a general minimal metabolic network.  Scientific Reports, under review. </p>
                                              <p>Wiki design and arrangement.</p>
+
</div>
                                        </div>
+
                                        </li>
+
                                        <li class="clearfix">
+
<img src="/wiki/images/f/f9/UESTC_Software_Xs1.jpg" class="stamp"/>
+
                                        <div class="">
+
                                              <p>Xia Song. </p>
+
                                              <p>Art design and poster.</p>
+
                                        </div>
+
                                        </li>
+
                                        <li class="clearfix">
+
<img src="/wiki/images/d/d9/UESTC_Software_Gyz1.jpg" class="stamp"/>
+
                                        <img src="/wiki/images/0/00/UESTC_Software_Zy1.jpg" class="stamp"/>
+
                                        <div class="">
+
                                              <p>Gao Yizhou and Zhu Ye. </p>
+
                                              <p>UI of software.</p>
+
                                        </div>
+
                                        </li>
+
                                        <li class="clearfix">
+
<img src="/wiki/images/a/a8/UESTC_Software_Sr1.jpg" class="stamp"/>
+
                                        <div class="">
+
                                              <p>Sun Rui. </p>
+
                                              <p>Game and presentation.</p>
+
                                        </div>
+
                                        </li>
+
                                        <li class="clearfix">
+
<img src="/wiki/images/1/1e/UESTC_Software_Wf1.jpg" class="stamp"/>
+
                                        <div class="">
+
                                              <p>Wu Fan. </p>
+
                                              <p>Wiki document.</p>
+
                                        </div>
+
                                        </li>
+
                                        <li class="clearfix">
+
<img src="/wiki/images/1/17/UESTC_Software_Yrm1.jpg" class="stamp"/>
+
                                        <div class="">
+
                                              <p>Yang Ruoman. </p>
+
                                              <p>Art design and poster.</p>
+
                                        </div>
+
                                        </li>
+
<!--<img src="/wiki/images/d/d9/UESTC_Software_Gyz1.jpg" class="stamp">
+
                                        <img src="/wiki/images/a/a5/UESTC_Software_Mhh1.jpg" class="stamp">
+
                                        <img src="/wiki/images/a/a8/UESTC_Software_Sr1.jpg" class="stamp">
+
                                        <img src="/wiki/images/1/1e/UESTC_Software_Wf1.jpg" class="stamp">
+
                                        <img src="/wiki/images/f/f3/UESTC_Software_Wyj1.jpg" class="stamp">
+
                                        <img src="/wiki/images/f/f9/UESTC_Software_Xs1.jpg" class="stamp">
+
                                        <img src="/wiki/images/1/17/UESTC_Software_Yrm1.jpg" class="stamp">
+
                                        <img src="/wiki/images/b/b3/UESTC_Software_Yx1.jpg" class="stamp">
+
                                        <img src="/wiki/images/e/eb/UESTC_Software_Zwb1.jpg" class="stamp">
+
                                        <img src="/wiki/images/0/00/UESTC_Software_Zy1.jpg" class="stamp">-->
+
</ul>
+
</li>
+
                        <li class="attr-li clearfix">
+
<h2>Human Practice: All of us! </h2>
+
<!--<div class="pho-show">
+
<img src="/wiki/images/4/46/UESTC_Software_Dyc1.jpg" class="stamp">
+
</div>-->
+
</li>
+
                        <li class="attr-li clearfix">
+
<div class="pho-show">
+
<p>√All the work were done by ourselves. Above are the assignment of our work. </p>
+
                                        <p>√About project selection: We have several heated discussions in choosing the project under the instruction of instructors and advisors. </p>
+
 
+
</div>
+
</li>
+
                </ul>
+
<ul class="attr-sup">
+
<li class="attr-li">
+
<h2>Instructors and advisors</h2>
+
<p>Professor Feng-biao Guo</p>
+
                                <p>Professor Jian Huang</p>
+
<p>Advisor Yuan-nong Ye</p>
+
<p>Advisor Ling Quan</p>
+
<p>Advisor Qiong Zhang</p>
+
<p>Advisor Jun-feng Zhou</p>
+
</li>
+
<li class="attr-li">
+
<h2>General Support</h2>
+
<p>Great thanks to School of Life Science and Technology of University of Electronic and Science Technology of China for providing us with training base and server.</p>
+
</li>
+
<li class="attr-li">
+
<h2>Financial Support</h2>
+
<p>Great thanks to University of Electronic and Science Technology of China and UESTC National Science Park for providing us funds to meet our all expenses including flight, accommodations and registration.<br/>
+
More information:<a href="http://www.uestc.edu.cn/">http://www.uestc.edu.cn/</a>
+
</p><p style="text-indent:10rem;margin:0;" ><a href="http://www.jwc.uestc.edu.cn/">http://www.jwc.uestc.edu.cn/</a>
+
</p>
+
</li>
+
<li class="attr-li">
+
<h2>Academic Support</h2>
+
<p>We would like to express our gratitude to many Koonin E.V, his previous study and papers really inspired us.<br/>
+
A special thanks to MCCAP, we have learned a lot from this software.
+
</p>
+
</li>
+
<li class="attr-li">
+
<h2>Support from Friends</h2>
+
<p>Special thanks to ‘Niguang’ photo studio for taking group pictures and work photos for us.</p>
+
</li>
+
                         <li class="attr-li">
+
<h2>Others</h2>
+
<p>During the whole prepare phase, we had regular meetings to discuss and deal with problems.<br/>
+
All project has been independently presented by the entire UESTC-Software iGEM team including student members and instructors. We completed all the work such as modeling, programming, document writing, wiki implementing, art design and human practice on our own.
+
</p>
+
</li>
+
</ul>
+
<ul class="attr-oth">
+
+
+
+
</ul>
+
 
</div>
 
</div>
<footer>
+
        <footer>
 
<div class="footer_define">
 
<div class="footer_define">
 
<div class="footer_logo">
 
<div class="footer_logo">
Line 214: Line 108:
 
</ul>
 
</ul>
 
</div>
 
</div>
        </footer>
+
      </footer>
 
</body>
 
</body>
 +
 
</html>
 
</html>

Revision as of 09:26, 15 September 2015

Description

Description

Background

It is widely accepted that building a minimal artificial cell serves as a critical role in synthetic biology. A synthetic minimal cell will supply a proper chassis to integrate functional synthetic parts, devices and systems with functions which can meet different purposes and requirements [1].

More and more researchers have taken the design and construction of a functional minimal genome into great consideration when assembly such a minimal artificial cell or chassis, since all the cell functions can be dates back to genome. For the minimal genome, it represents the infrastructure of a minimal cell and could be taken as the foundation for synthetic biology [1]. It is well-known that minimal genome can be used for chassis cell while applying to the industrial manufacture and synthetic biology [2]. On one hand, reduced cell can transfer resource into specific products needed by human more effective and can reduce the waste of resource as well. For another, it is much easier for the extraction and purification of target products [3].

The works for evaluating the size and content of minimal genome have been carried out through comparative and experimental approaches. Mushegian and Koonin [4] pioneered the work of determining a minimal gene set by comparative genomic approach (bottom-up approach and top-down approach). They derived such a repertoire for the first minimal gene set with 256 conserved genes based on the first two completely sequenced small bacterial genomes, Mycoplasma genitalium and Haemophilus influenza, which belong to two ancient bacterial lineages, i.e., Gram-positive and Gram-negative bacteria, respectively. Later, based on comprehensively comparing the published data from comparative genomics and experiments, Gil [5] and his colleagues determined the core of a minimal bacterial gene set with 206 genes, and reconstructed a minimal metabolic machinery necessary to sustain life [6].

In practice, the comparative-genomic approach to minimal gene-set derivation is based on the key evolutionary notion of orthology, and the resulting sets of genes should approximate those of ancestral life-forms [6].

It is predictable that with the increasing number of chromosomes from different organisms, the number of orthologous genes would descend. Analysis of about 100 genomes shows that only 63 genes are ubiquitous. That may be caused by the condition, when the genes which perform the same function in two species are non-orthologous, then the essential gene will be missed [4]. However, the researchers had to adopt the “ubiquitous” strategy just because at that time only a few bacterial genomes had been completely sequenced.

Overview

In recent years, dozens of bacteria have obtained genome scale essentiality data with experimental validations and they can provide us the feasibility to develop a novel strategy of minimal gene set extraction from the experimental essentiality data. Following the comparative genomic approach (bottom-up method), we developed the “half-retaining”, by comparing the experimentally-determined essential genes among various reference species. This strategy [7] retains the essential genes persisting in more than half of the reference genomes to obtain conserved essential genes. Conventional methods [4] which retain genes persistent in all reference species as a minimal gene set suffer from the disadvantage that the number of orthologous genes would drop off with the increase of the number of chromosomes from different organisms. In contrast, we overcomes this issue in principle and results in a robust gene set, only if the reference species are randomly selected and cover all the primary phylogenetic lineages. In addition, our source data is derived from the initial set of experimentally-determined essential genes, which ensures our results are not redundant. Hence, our results represent that the size and content of minimal gene set are stable and convergent.

Virtues

To construct an updated minimal gene set of bacteria, we renovate systematically the conventional process in the following two points. Firstly, it starts from the experimentally-determined essential genes and thus the result is more reliable and accurate. Secondly, we developed a new strategy called half-retaining to identify essential genes conserved among over half of the reference species, which made the obtained minimal gene set more robust.

Innovation

For innovation, our strategy, half-retaining, has blazed a new trail in three aspects. Based on the increasingly accumulated number of essential gene experimentally determined by genome scale gene in-activation way, we together with instructors’ groups proposed our strategy, half-retaining, to solve this problem [7]. Primarily, we combined comparative genomics approach with data (essential genes) from experiments (gene inactivation) instead of using theoretical method alone to construct a more complete minimal gene set than previous. In the second place, the minimal gene set that we defined would be confirmed according to user requirements and users’ purpose, rather than the only gene set in the previous. At last, the ubiquitous genes of minimal gene set determined by Koonin suffers from the flaw that enlarging the number of reference species would reduce the amount of genes retained in the minimal gene set. However, our half-retaining strategy overcomes this problem and results in a robust gene set. The number of selected genes is tending towards stability with the increase reference species by our strategy.

[1] Juhas M. On the road to synthetic life: the minimal cell and genome-scale engineering. Crit Rev Biotechnol, 2015, July 7. [Epub head of print]

[2] Juhas M, Eberl L, Church GM. Essential genes as antimicrobial targets and cornerstones of synthetic biology. Trends Biotechnol, 2012, 30(11)601-7.

[3] Foley, P.L. and Shuler, M.L. Considerations for the design and construction of a synthetic platform cell for biotechnological applications. Biotechnol Bioeng, 2010, 105(1), 26-36.

[4] Mushegian AR, Koonin EV. A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc Natl Acad Sci USA, 1996, 93(19):10268-73.

[5] Gil R, Silva FJ, Pereto J, Moya A. Determination of the core of a minimal bacterial gene set. Microbiol Mol Biol Rev, 2004, 68(3): 518-37.

[6] Koonin EV. Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol, 2003, 1(2):127-36.

[7] Zhang LY, Chang SH, Wang J. How to make a minimal genome for synthetic minimal cell. Protein Cell. 2010, 1(5):427-34

[8] Yuan-Nong Ye, Bin-Guang Ma, Chuan Dong, Hong Zhang, Ling-Ling Chen and Feng-Biao Guo. A novel bacteria minimal gene set and neo-construction of a general minimal metabolic network. Scientific Reports, under review.