Producing Chemically Competent Cells (Modified Campylobacter jejuni Protocol (1)):

Materials Needed:

Two TSA plates (Bacterial Lawn Grown)
One empty TSA plate
Wash Buffer (264mM Sucrose, 15% Glycerol)
Centrifuge
1.5mL Eppendorf Tubes
TSB
Pipets

Protocol (estimated time 1 hour):

- 1. Remove the bacteria from plates by pipetting 2mL TSB onto the plates, followed by scraping the cells off with an inoculation loop.
- 2. Once the bacteria are scraped off the plate and floating/suspended in the TSB, angle the plate to one side and pipet up all the TSB (contains the cells)
 - a. The solution is then dispensed into the 1.5mL eppendorf tubes.
- 3. Repeat steps 1 and 2 with the other plate.
- 4. Pellet the cells by centrifugation at >10000g for 5 minutes.
- 5. Remove the supernatant without disturbing the bacterial pellet.
- 6. Resuspend the bacterial pellet in 1mL ice cold wash buffer.
 - a. The pellet can be resuspended by gently pipetting up and down close to the bacterial pellet.
- 7. Repeat steps four through six, three times.
 - a. each time, resuspending the cells will get easier and easier.
- 8. For the last time, resuspend the bacterial pellet in 400µL of ice cold wash buffer.
- 9. The cells can immediately be used or can be frozen at -80°C in 100µL aliquots.
- 10. Streak out the competent cells to ensure they survived the washes and no contamination.

Producing Electrically Competent Cells (Modified Salmonella Protocol (2)):

Materials Needed:

Two TSA plates (Bacterial Lawn Grown)
Centrifuge
1.5mL Eppendorf Tubes
50ml Sterile Falcon Tubes
TSB
Pipets
1mM HEPES Buffer (pH:7)
10% Glycerol Solution
Ice Bucket
One Empty TSA Plate

Protocol (estimated time 2 hours):

- 1. Remove the bacteria from the plates by pipetting 4mL TSB onto the plates, followed by scraping the cells off of the TSA with an inoculation loop.
- 2. Once the bacteria are scraped off the plate and floating/suspended in the TSB, angle the plate to one side and pipet up all the TSB (contains the cells)
 - a. The solution is then dispensed into a 50mL falcon tube.
- 3. Repeat steps one and two.
 - a. However, place the cells into the same 50mL falcon tube as used in step one and two.
- 4. Chill the cells on ice for 15 minutes
 - a. during this time, set a centrifuge to cool down to 4°C.
- 5. Pellet the cells by centrifugation at 2300g for 10 minutes (4°C).
 - a. Remove the supernatant by pouring it out the top.
 - i. Be sure to quickly flame the lid of the falcon tube.
- 6. Resuspend the cells by gently shaking in 40mL chilled 1mM HEPES buffer.
- 7. Pellet the cells by centrifugation at 2300g for 10min and remove the supernatant.
- 8. Repeat steps five and six with 20mL chilled 1mM HEPES buffer, followed by 20mL chilled 10% glycerol, and lastly 3mL chilled 10% glycerol.
 - a. Cells can immediately be used or can be frozen at -80°C in 100µL aliquots.
- 9. Streak out the competent cells to ensure they survived the washes and no contamination.

Producing Electrically Competent Cells (Modified Pseudomonas Protocol (2)):

Materials Needed:

Two TSA plates (Bacterial Lawn Grown)

Centrifuge

1.5mL Eppendorf Tubes

50ml Sterile Falcon Tubes

TSB

Pipets

Ice Bucket

One Empty TSA Plate

Magnesium Electroporation Buffer (1mM MgCl₂, 1mM HEPES, pH:7)

Protocol (estimated time 2 hours):

- 1. Remove the bacteria from the plates by pipetting 4mL TSB onto the plates, followed by scraping the cells off of the TSA with an inoculation loop.
- 2. Once the bacteria are scraped off the plate and floating/suspended in the TSB, angle the plate to one side and pipet up all the TSB (contains the cells)
 - a. The solution is then dispensed into a 50mL falcon tube.

- 3. Repeat steps one and two.
 - a. However, place the cells into the same 50mL falcon tube as used in step one and two.
- 4. Pellet the cells by centrifugation at 2300g for 10 minutes (4°C).
 - a. Remove the supernatant by pouring it out the top.
- 5. Resuspend the bacterial pellet in 20mL ice cold MEB
- 6. Repeat steps four and five and four again.
- 7. Resuspend the bacterial pellet in 1mL ice cold MEB (with glycerol or sucrose added)
 - a. Cells can immediately be used or can be frozen at -80°C in 100µL aliquots.
- 8. Streak out the competent cells to ensure they survived the washes and no contamination.

S. enteritidis Electroporation Protocol

Materials

dH2O
50% glycerol
1.5 mL Eppendorf Tubes
liquid N2
100 mL TSB culture of *G. apicola*

Protocol

- 1. Grow culture of G. apicola for O/N
- 2. Spin down cells at 5000g for 20 min. Decant supernatant.
- 3. Resuspend pellet with 25mL of pre-chilled dH2O
- 4. Spin down cells at 5000g for 10 min. Decant supernatant.
- 5. Resuspend pellet with 12.5mL of pre-chilled dH2O
- 6. Spin down cells at 5000g for 10 min. Decant supernatant.
- 7. Resuspend pellet with 6.25mL of pre-chilled dH2O
- 8. Spin down cells at 5000g for 10 min. Decant supernatant.
- 9. Resuspend pellet with 1.8mL of dH20 and 0.2mL of 50% glycerol
- 10. Aliquot 50uL of cells into epitube and freeze snap with liquid N2

References

1. Williams, P., Ketley, J., & Salmond, G. (Eds.). (1998). *Bacterial Pathogenesis*. London, UK: Academic Press.

 Nickoloff, J. A. (Ed.). (1995). Electroporation Protocol for Microorganisms. Totowa, NJ: Humana Press Inc.