
INTRODUCTION 

Our Modeling is primarily based on the confirmatory experiments we have 
designed 

Five experimental groups designed in our experiment formed five states 
which are known as… 

Through our experiment, we can know five groups of data about macro 
binding efficiency. We also can know the occurring probability of the micro 
FRET in both background state and strong binding state. 

Macro binding efficiency depends on FRET micro binding efficiency, the 
occurring probability of the micro FRET and other variables. 

We want to calculate the occurring probability of the micro FRET in weak 
binding state, the competition state, and the similar competition state 
when we know FRET occurring probability under the condition of the macro 
binding efficiency and the strong binding state. 

So in this model, our six major variables are the amount of antigen (Ag), the 
amount of antibody (Ab), the amount of key, the amount of Ab with Ag, the 
amount of Ab with key and the extend of combination. We will use some 
differential equation to find out the relationships to between these 
variables. 

Here are also some regular values. Affinity is one of them. We will use the 
data of affinity to calculate variables. 

‘k’ is related to affinity between one antibody withkey and one antigen. We 
will start our equation with using the regular value ‘k’ to work out some 
differential equations. 



By using these equations, we can find out the relationship between these 
variables.  
We can use these variables. We can use these relationships to work out the 
relationship with these variables and the extend of combination. 

Now we know that the extend of combinations is related to six major 
variables in our equations and ‘k’. In the experiment, we can control these 
variables and use the positive correlation model to calculate the 
relationship between the extend of combination and affinity. 

In the modeling part, we assume that there are some ideal conversion rates 
when the experiment happening. 
: k (from Ab-key to Ag and from Ag to Ab-key), a(from Ab-Ag to Ag and Ab) and b(from 
Ab-key to Ab and wAg). 

And we will use Volterra Model in the part of designing the cycle of injection of 
Ab-key. 

EQUATIONS AND EXPLANATIONS 

  
  

  



We have acknowledged that one Ab with key + one Ag coming into one Ab 
with Ag and one key is irreversible and the amount of this kind of changes is 
related to X1, X2 and time. 

In this picture, we assume that there are some ideal conversion rates when 
the experiment happening: k (from Ab-key to Ag and from Ag to Ab-key), a(from Ab-
Ag to Ag and Ab) and b(from Ab-key to Ab and key). 

we can know that 

K：—a regular value which is related to affinity(f) between one Ab with key 
and one Ag which is defined as p， 
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so we can attain an another equation: k=pf. 

According to the first equation above, we can know that ‘x2=x1+m’. 

dx1/dt=dx2/dt=-k*x1*x2’ 
’k=pf’ 
‘x2=x1+m’ 

And the program code of matlab is: 
dsolve('Dx1=-p*f*x1*(x1+m)','x1(0)=c','t') 
ans =m/(exp(m*(log((m + c)/c)/m + f*p*t)) - 1) 

x1= m/(exp(m*(log((m + c)/c)/m + f*p*t)) - 1) 

‘E=(x0-x1)/x1’ which is simplified as 
‘E=1- m/((exp(m*(log((m + c)/c)/m + f*p*t)) - 1)*c)’ 
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We can get: 

‘dx1/dt=a*x5-k*x1*x2’ 
‘dx2/dt=-b*x2-k*x1*x2’ 
‘dx3/dt=a*x5+b*x2’ 
‘dx4/dt=b*x2+k*x1*x2’ 
‘dx5/dt=-a*x5+k*x1*x2’, 
by using Volterra Model. 

Due to the fact that the amount of Ab,Ag,and key is regular,we can acquire 
3 equations: 
’x1+x5=c; 
x2+x4=d; 
x2+x5+x3=d’ 
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We assume that  
x3(0)=x4(0)=x5(0)=0. 

dsolve('Dx3=a*(c-x1)+b*x2','x3(0)=0','t') 
 ans = t*(a*c - a*x1 + b*x2) 

So  
according the equations above, 
x3=x1-x2+d-c. 
So  
[x1]=dsolve('Dx1=a*(c-x1)-k*x1*x2','x1(0)=c','t') 
 x1 = (a*c + c*k*x2*exp(-t*(a + k*x2)))/(a + k*x2) 

So we can input the value of x2. 

sym x1; 
[x1]=solve('(a*c+c*k*(((a*t+1)*x1+d-c-a*c*t)/(b*t+1))*exp(-t*(a+ k*(((a*t
+1)*x1+d-c-a*c*t)/(b*t+1)))))/(a + k*(((a*t+1)*x1+d-c-a*c*t)/(b*t+1)))') 
x1 =(c - d + a*c*t - ((b*t + 1)*lambertw(l, a*t*exp(a*t)))/(k*t))/(a*t + 1) 
<<NOTE: The solutions are valid under the following conditions: (a*t*exp(a*t) 
~= 0 | l == 0) & (lambertw(l, a*t*exp(a*t)) ~= a*t | t == 
0) & t ~= 0 & in(l, 'integer')>> 

By inputting k=f*p 

As what we have defined above  





  



By acquiring the ’E’ in the target realm ,we can know the exact situation in 
a short time, and we can know the least dosage in a short time. On the next 
step we will consider the factor of their own proliferation, but if we still 
consider the separability, it will increase the complexity of the whole 
system and won’t help the accuracy a lot. By using the model below, we can 
know the general dosage of Ab-key and we can design the cycle of injection 
of Ab-key.

Variable Description
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We can also combine our modeling system with Volterra model to judge the 
least dosage because the Ag often has mass poliferation that affects the 
system a lot. We have acknowledged that one Ab with key + one Ag coming 
into one Ab with Ag and one key is irreversible and the amount of this kind 
of changes is related to the amount of Ab with key(x2) , the amount of Ag 
(x1) and time.

We can acquire b which is related to the affinity(f) between one Ab with key 
and one Ag which is defined as p,and c and a.

So we can acquire the equations below.
dx1/dt=a*x1-b*x1*x2 ……1 
dx2/dt=c*x2-b*x1*x2 ……2 

Because those are Nonlinear ordinary differential equations, we have to 
change them into linear equations;
dx1/dt=a*x1-b*x1*x2=x1*(a-b*x2)=0 ……3
dx2/dt=c*x2-b*x1*x2=x2*(c-b*x1)=0 ……4

So we have two groups of solutions:
x1=0,x2=0 ……5
x1=c/b,x2=a/b ……6.

So we can get two linear equation groups:
dx1/dt=a*x1;
dx2/dt=c*x2;

So we have two groups of solutions: 
x1=0,x2=0;5 
x1=c/b,x2=a/b;6. 

So we can get two linear equation groups: 
dx1/dt=a*x1; 
dx2/dt=c*x2; 
The matrix is C1  ;7 
dx1/dt=-c*x2+a*c/b; 
dx2/dt=-a*x1+ a*c/b; 
The matrix is C2;8 

By using the quation’｜λE-C｜=0’,we can acquire the eigenroots of the 
equations.It  
is not difficult to find that only the latter group has the eigenroots that are 
both  
below zero,so only the latter group has the stable solutions. 

We can also acquire the inchoate amount of the Ag(d)and that of the Ab 
with key(e). 

The Matlab program codes: 



x1=dsolve('Dx1=-c*x2+a*c/b','x1(0)=d','t') 
x1 =d + (t*(a*c - b*c*x2))/b 
>> x2=dsolve('Dx2=-a*x1+a*c/b','x2(0)=e','t') 
 x2 =e + (t*(a*c - a*b*x1))/b 
x1=solve('d + (t*(a*c - b*c*(e + (t*(a*c - a*b*x1)))/b))/b-x1=0','x1')  
x1 =-(d - (t*(c*(e + a*c*t) - a*c))/b)/(a*c*t^2 - 1). 

‘E=(x0-x1)/x1’ which is simplified as   

We can also acquire the max amount of the Ag in the target realm(K1),and 
also we can control the max amount of Ab-key(K2)

x1 / dt = a*x1（1 – x1/ K1 – b*c*x2 / K1= 0.........（1） 
x2/ dt = b*x2（1 – x2 / K2 – a*c*x1/ K2= 0.........（2）

By using the equations above ,we can find the equilibrium point. 
‘E=(x0-x1)/x1’ which is simplified as   

（K1 > K2/b*a） 
Ag can repress Ab-
key

（K1 < K2/c*b） 
Ag can’t repress Ab-key

（K2 > K1/b*c） 
Ab-key can repress Ag

Not sure whether Ag 
is out of control

Ag is in control

（K2 < K1/a*b） 
Ab-key can’t repress Ag

Ag isn’t in control Ag is in control


