Difference between revisions of "Team:Bordeaux/Description"
Line 152: | Line 152: | ||
<h5> Other useful properties of Curdlan </h5> | <h5> Other useful properties of Curdlan </h5> | ||
− | <div class="col-lg- | + | <div class="col-lg-7"> |
<p align="justify" style="text-indent: 3vw;"> Curdlan, the linear (1→3)-β-glucan from Agrobacterium, has unique rheo-logical and thermal gelling properties. It is neutral and insoluble in water and if it is heated in an aqueous suspension, it adopts simple helical conformations (55-80°C) or a triple helical connected conformation (80-130°C). [1] It then acts as a gelling agent and form two types of gels (low-set gel or high-set gel which have been documented by Zhang et al [3]). Apart from being tasteless, colourless and odourless, its advantages are that, in contrast to cold-set gels (e.g. gelatin, gellan, carrageenan) and heat-set gels (e.g. konjac glucomannan, methylcellulose), the heating process alone produces different forms of curdlan gels with different textural qualities, physical stabilities and water-holding capacities. Curdlan gels are widely used in the food industry as a food additive ( E424 ) and to develop new food products (e.g. freezable tofu noodles) and calorie-reduced food, since there are no digestive enzymes for curdlan in the upper alimentary tract, and curdlan can be used as a fat substitute [4]. The safety of curdlan has been assessed in animal studies and in vitro tests [4,5] and it is approved for food use in Korea, Taiwan and Japan as an inert dietary fibre. It is registered in the United States as a food additive [7] </p> | <p align="justify" style="text-indent: 3vw;"> Curdlan, the linear (1→3)-β-glucan from Agrobacterium, has unique rheo-logical and thermal gelling properties. It is neutral and insoluble in water and if it is heated in an aqueous suspension, it adopts simple helical conformations (55-80°C) or a triple helical connected conformation (80-130°C). [1] It then acts as a gelling agent and form two types of gels (low-set gel or high-set gel which have been documented by Zhang et al [3]). Apart from being tasteless, colourless and odourless, its advantages are that, in contrast to cold-set gels (e.g. gelatin, gellan, carrageenan) and heat-set gels (e.g. konjac glucomannan, methylcellulose), the heating process alone produces different forms of curdlan gels with different textural qualities, physical stabilities and water-holding capacities. Curdlan gels are widely used in the food industry as a food additive ( E424 ) and to develop new food products (e.g. freezable tofu noodles) and calorie-reduced food, since there are no digestive enzymes for curdlan in the upper alimentary tract, and curdlan can be used as a fat substitute [4]. The safety of curdlan has been assessed in animal studies and in vitro tests [4,5] and it is approved for food use in Korea, Taiwan and Japan as an inert dietary fibre. It is registered in the United States as a food additive [7] </p> | ||
</div> | </div> | ||
Line 160: | Line 160: | ||
<b> Reference :</b> <a href ="http://link.springer.com/chapter/10.1007%2F978-1-4615-2486-1_14#page-1"> www.link.springer.com</a> | <b> Reference :</b> <a href ="http://link.springer.com/chapter/10.1007%2F978-1-4615-2486-1_14#page-1"> www.link.springer.com</a> | ||
</div> | </div> | ||
+ | </div> | ||
+ | |||
+ | <div class="col-lg-10 col-lg-offset-1"> | ||
<p align="justify" style="text-indent: 3vw;"> Curdlan has also found applications in non-food sectors. Its water-holding capacity is applied in the formulation of “superworkable” concrete, where its enhanced fluidity prevents cement and small stones from segregating [8]. It has also been proposed as an organic binding agent for ceramics [9]. In addition, curdlan gels have medical and pharmacological potential, for example in drug delivery through sustained and diffusion-controlled release of the active ingredient. [10]</p> | <p align="justify" style="text-indent: 3vw;"> Curdlan has also found applications in non-food sectors. Its water-holding capacity is applied in the formulation of “superworkable” concrete, where its enhanced fluidity prevents cement and small stones from segregating [8]. It has also been proposed as an organic binding agent for ceramics [9]. In addition, curdlan gels have medical and pharmacological potential, for example in drug delivery through sustained and diffusion-controlled release of the active ingredient. [10]</p> |
Revision as of 08:29, 15 August 2015