|
|
(14 intermediate revisions by one other user not shown) |
Line 1: |
Line 1: |
− | {{TCU_Taiwan/CSS}}
| |
− | <html>
| |
− | <style type="text/css">
| |
− | body{
| |
− | background-image:url(https://static.igem.org/mediawiki/2015/1/11/Tcu_taiwan2015_Igem_background.jpg);
| |
− | background-repeat:no-repeat;
| |
− | background-attachment:fixed;
| |
− | background-size: 100% 100%;
| |
− | }
| |
− | #form {
| |
− | position:static;
| |
− | margin-left:10%;
| |
− | margin-top:2%;
| |
− | width:80%;
| |
− | height:50%;
| |
− | z-index:1;
| |
− | overflow:visible;
| |
− | margin-bottom:2%;
| |
− | display: inline-block
| |
− | }
| |
− | </style>
| |
− | <body>
| |
− | <img src="https://static.igem.org/mediawiki/2015/5/5f/2015tcutaiwanProject.jpg" width="100%" align="center" />
| |
− | <div id="form" style="background: rgba(100%,100%,100%,0.5); overflow-x:hidden;overflow-y:hidden; ">
| |
− | <h1>
| |
− | <table width="97%" align="center">
| |
− | <tr><br>
| |
− | <td align="center">
| |
− | <span style="font-family:Arial Black;;line-height: 150%;">
| |
− | <font size="8"><font-weight: 900;>
| |
− | <br>AMP. <I>coli</I>
| |
− | </font>
| |
− | </span>
| |
− | </td>
| |
− | </tr>
| |
− | </table>
| |
| | | |
− | <table width="97%" align="center">
| |
− | <tr>
| |
− | <td width="3%"></td>
| |
− | <td>
| |
− | <p align="justify" ><span style="font-family:Calibri;line-height: 150%;"><font size="5">
| |
− | To achieve our goal we incorporated antimicrobial peptides (AMPs) into our medical dressing. AMPs, are stable peptide that have extensive ability in bactericidal effects. Unlike antibiotics, AMPs can puncture the cell membrane to kill the bacteria therefore bypassing bacterial antibiotic drug resistance mechanisms. <a href="https://2015.igem.org/Team:TCU_Taiwan/Project/Overview#tcu_references_1">[1]</a> Besides, the peptides also have ability to help skin recovered. <a href="https://2015.igem.org/Team:TCU_Taiwan/Project/Overview#tcu_references_2"> [2]</a>After reading numerous of research articles, we selected two kinds of AMPs: Signiferin and Epinecidin-1 as our reagents.<br><br>
| |
− |
| |
− |
| |
− |
| |
− | Signiferin is a peptide came from the skin mucus of <I>Crinia signifera</I>. It demonstrated effectiveness in killing Methicillin-Resistant <I>Staphylococcus aureus</I> (MRSA), and had been kindly proved by the TU-Delft 2013 iGEM team. Epinecidin-1 is a peptide came from the skin mucus of <I>Epinephelus coioides</I>. It has ability to help wound healing and has been proven by animal studies, and was selected as an additional reagent. <a href="https://2015.igem.org/Team:TCU_Taiwan/Project/Overview#tcu_references_3">[3]</a>Combining these two properties, we believe that can alleviate the serious problem of skin injury.<br><br>
| |
− |
| |
− | To control the AMPs expression and secretion, the <I>Lac</I> operon was used and treated signal peptide in our system. Helping peptides secret into culture medium.<a href="https://2015.igem.org/Team:TCU_Taiwan/Project/Overview#tcu_references_4">[4][5]</a> After purification of the peptide we will be testing the effectiveness of our synthetic AMPs. We will test macro-dilution of MRSA and in vitro wound healing assay for epithelial cells line (HaCaT) and micro vascular endothelial cells (HMEC-1). After in vitro test we will do in vivo test in mice to see its effectiveness on the wound. Out goal is to create a wound dressing that is effective in inhibiting bacterial growth and assisting wound healing process.<br>
| |
− | <br>
| |
− | </font>
| |
− | </span>
| |
− | </p>
| |
− | </td>
| |
− | <td width="3%"></td>
| |
− | </tr>
| |
− | </table>
| |
− | </h1>
| |
− | </div>
| |
− |
| |
− |
| |
− | <div id="form" style="background: rgba(100%,100%,100%,0.5); overflow-x:hidden;overflow-y:hidden; ">
| |
− | <p align="center">
| |
− | <img align="middle" src="https://static.igem.org/mediawiki/2015/f/f0/Tcu_Taiwan_Project_overview.jpg" width=100% height=100% >
| |
− | </p></div>
| |
− |
| |
− |
| |
− | <div id="form" style="background: rgba(100%,100%,100%,0.5); overflow-x:hidden;overflow-y:hidden; ">
| |
− | <table width="97%" align="center">
| |
− | <tr>
| |
− | <td width="3%"></td>
| |
− | <td>
| |
− | <span style="font-family:Calibri;line-height: 150%;text-align:justify;"><font size="5">
| |
− |
| |
− |
| |
− | <p>
| |
− | <a href="https://2015.igem.org/Team:TCU_Taiwan/Project/Our_Design">
| |
− | Antimicrobial peptide
| |
− | </a>
| |
− | </p>
| |
− |
| |
− |
| |
− | <p align="justify">• Epinecidin-1:</p>
| |
− |
| |
− | <p align="justify">1. From the skin mucus of <I>Epinephelus coioides</I> a kind of fish.
| |
− | </p>
| |
− | <p align="justify">
| |
− | 2. Has function of killing bacteria.
| |
− | </p>
| |
− | <p align="justify">
| |
− | 3. In addition, it has the ability to help wounds healing and has been proven by animal studies.
| |
− | </p>
| |
− | <br>
| |
− | <p align="justify">• Signiferin:
| |
− | </p>
| |
− | <p align="justify">
| |
− | 1. From the skin mucus of <I>Crinia signifera</I> a kind of tree frog.
| |
− | </p>
| |
− | <p align="justify">
| |
− | 2. Have function of killing bacteria.
| |
− | </p>
| |
− | <p align="justify">
| |
− | 3. Have great ability in disinfect Methicillin-Resistant <I>Staphylococcus aureus</I> (MRSA).
| |
− | </p>
| |
− | <p align="justify">
| |
− | 4. Had already been kindly proved by the 2013 TU-Delft iGEM team.
| |
− | </p>
| |
− | <br>
| |
− |
| |
− | <p>
| |
− | <a href="https://2015.igem.org/Team:TCU_Taiwan/Project/Experimental">Signal peptide: </a>
| |
− | </p>
| |
− | <p align="justify">
| |
− | 1. Helps AMPs to secret out of E. <I>coli</I>.
| |
− | </p>
| |
− | <p align="justify">
| |
− | 2. From <I>Streptomyces lividans</I> to trasport chitinase C to secretion system, which has been proven to work in E.<I>coli</I>
| |
− | </p>
| |
− | <p align="justify">
| |
− | by reference.
| |
− | </p>
| |
− | <br>
| |
− |
| |
− | <p style="font-size:0.7cm" align="justify">
| |
− | <a href="https://2015.igem.org/Team:TCU_Taiwan/Project/Reference">Wound dressing:</a>
| |
− | </p>
| |
− |
| |
− | <p align="justify">
| |
− | Based on AMPs to develop into a potential material of wound dressing.
| |
− | </p>
| |
− |
| |
− |
| |
− | </font>
| |
− | </span>
| |
− | </td>
| |
− | <td width="3%"></td>
| |
− | </tr>
| |
− | </table>
| |
− | </div>
| |
− | <a name="tcu_references_1"></a>
| |
− | <div id="form" style="background: rgba(100%,100%,100%,0.5); overflow-x:hidden;overflow-y:hidden; ">
| |
− | <table width="97%" align="center">
| |
− | <tr>
| |
− | <td width="3%"></td>
| |
− | <td>
| |
− | <span style="font-family:Calibri;line-height: 150%;text-align:justify;"><font size="5">
| |
− | <p style="font-size:1.2cm" align="center">
| |
− | References
| |
− | </p>
| |
− | <br>
| |
− |
| |
− | <p style="font-size:0.6cm" align="justify">
| |
− |
| |
− | <a name="tcu_references_2"></a>
| |
− | <table width="100%" align="center" style="background-color: rgba(100%,100%,100%,0);line-height: 33px;">
| |
− | <tr>
| |
− | <td width="5%">[1]</td>
| |
− | <td width="90%">
| |
− | Lai Y, Gallo RL. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 2009 Mar; 30(3):131-41. doi: 10.1016/j.it.2008.12.003. Epub 2009 Feb 13.
| |
− | </td>
| |
− | </tr>
| |
− | </table>
| |
− | <br>
| |
− | <a name="tcu_references_3"></a>
| |
− | <table width="100%" align="center" style="background-color: rgba(100%,100%,100%,0);line-height: 33px;">
| |
− | <tr>
| |
− | <td width="5%">[2]</td>
| |
− | <td width="90%">
| |
− | Huang HN, Rajanbabu V, Pan CY, Chan YL, Wu CJ, Chen JY. Use of the antimicrobial peptide Epinecidin-1 to protect against MRSA infection in mice with skin injuries. Biomaterials. 2013 Dec; 34(38):10319-27. doi: 10.1016/j.biomaterials.2013.09.037. Epub 2013 Sep 27.
| |
− |
| |
− | </td>
| |
− | </tr>
| |
− | </table>
| |
− | <br>
| |
− | <a name="tcu_references_4"></a>
| |
− | <table width="100%" align="center" style="background-color: rgba(100%,100%,100%,0);line-height: 33px;">
| |
− | <tr>
| |
− | <td width="5%">[3]</td>
| |
− | <td width="90%">
| |
− | Maselli VM, Bilusich D, Bowie JH, Tyler MJ. Host-defence skin peptides of the Australian Streambank Froglet Crinia riparia: isolation and sequence determination by positive and negative ion electrospray mass spectrometry. Rapid Commun Mass Spectrom. 2006; 20(5):797-803.
| |
− | </td>
| |
− | </tr>
| |
− | </table>
| |
− |
| |
− | <br>
| |
− | <a name="tcu_references_5"></a>
| |
− | <table width="100%" align="center" style="background-color: rgba(100%,100%,100%,0);line-height: 33px;">
| |
− | <tr>
| |
− | <td width="5%">[4]</td>
| |
− | <td width="90%">
| |
− | Tokuyasu K, Kaneko S, Hayashi K, Mori Y. Production of a recombinant chitin deacetylase in the culture medium of Escherichia coli cells. FEBS Lett. 1999 Sep 10; 458(1):23-6.
| |
− | </td>
| |
− | </tr>
| |
− | </table>
| |
− | <br>
| |
− |
| |
− | <table width="100%" align="center" style="background-color: rgba(100%,100%,100%,0);line-height: 33px;">
| |
− | <tr>
| |
− | <td width="5%">[5]</td>
| |
− | <td width="90%">
| |
− | Fujii T, Miyashita K. Multiple domain structure in a chitinase gene (chiC) of Streptomyces lividans. J Gen Microbiol. 1993 Apr; 139(4):677-86.
| |
− | </td>
| |
− | </tr>
| |
− | </table>
| |
− | <br>
| |
− | </p>
| |
− | </font>
| |
− | </span>
| |
− | </td>
| |
− | <td width="3%"></td>
| |
− | </tr>
| |
− | </table>
| |
− | </div>
| |
− | <br><br><br><br><br>
| |
− | </body>
| |
− | </html>
| |
− | {{TCU_Taiwan/CSSfooter}}
| |