Difference between revisions of "Team:Bordeaux/Problem"
Line 107: | Line 107: | ||
<h6 align="justify"> Natural defenses of plants </h6> | <h6 align="justify"> Natural defenses of plants </h6> | ||
− | <p align="justify" style="text-indent: 3vw;"> Plant Immunization is based on the same principle as human immunization: activating it's natural defenses before contamination by an infectious agent. The concept is simple; it is to put the plant in contact with a molecule able to activate it's natural defenses: <b> an elicitor </b> . In nature there are many elicitors produced by micro-organisms (exogenous elicitors) or by the plant itself when it is attacked (endogenous elicitors). The presence of an elicitor in the plant triggers a series of cellular reactions including the <b> production of molecules to strengthen the resistance of cell walls </b>, but also the <b> production of plant antibiotics </b> such as phytoalexins or defense proteins. These compounds have antifungal and antibacterial properties. The external application of a natural elicitor or a similar synthetic molecule thus results in the production of phytoalexins or defense proteins in the absence of any pathogen. The "immunized" plant is ready to fight back if attacked. First, the cell wall forms a physical barrier which prevents the penetration of most microbes. </p> | + | <p align="justify" style="text-indent: 3vw;"> Plant Immunization is based on the same principle as human immunization: activating it's natural defenses before contamination by an infectious agent. The concept is simple; it is to put the plant in contact with a molecule able to activate it's natural defenses: <b> an elicitor </b> . In nature there are many elicitors produced by micro-organisms (exogenous elicitors) or by the plant itself when it is attacked (endogenous elicitors). The presence of an elicitor in the plant triggers a series of cellular reactions including the <b> production of molecules to strengthen the resistance of cell walls </b>, but also the <b> production of plant antibiotics </b> such as <b>phytoalexins</b> or <b>defense proteins</b>. These compounds have antifungal and antibacterial properties. The external application of a natural elicitor or a similar synthetic molecule thus results in the production of phytoalexins or defense proteins in the absence of any pathogen. The "immunized" plant is ready to fight back if attacked. First, the cell wall forms a physical barrier which prevents the penetration of most microbes. </p> |
<p align="justify"> Then, if some pathogens are able to cross this wall, the infection depends on the ability of the plant to perceive and to trigger defense reactions that would prevent the development of the disease. This recognition is done with certain compounds, known as elicitors from the pathogen or plant. <b> The fixing of an elicitor to a plant cell receptor initiates a cascade of events that leads to the synthesis of defense compounds </b>. The best known are antimicrobial compounds such as <b> phytoalexins </b> and <b> Pathogenesis Related proteins </b>. </p> | <p align="justify"> Then, if some pathogens are able to cross this wall, the infection depends on the ability of the plant to perceive and to trigger defense reactions that would prevent the development of the disease. This recognition is done with certain compounds, known as elicitors from the pathogen or plant. <b> The fixing of an elicitor to a plant cell receptor initiates a cascade of events that leads to the synthesis of defense compounds </b>. The best known are antimicrobial compounds such as <b> phytoalexins </b> and <b> Pathogenesis Related proteins </b>. </p> | ||
Revision as of 17:39, 4 September 2015