Difference between revisions of "Team:UC Davis"

Line 289: Line 289:
 
                     <div class="btn btn-lg" id="attributions">Sponsors</div>
 
                     <div class="btn btn-lg" id="attributions">Sponsors</div>
 
                     <div class="btn btn-lg" id="achieve">Medals</div>
 
                     <div class="btn btn-lg" id="achieve">Medals</div>
                     <div class="btn btn-lg" id="logo"><a href = "https://igem.org/Main_Page"><img src = "https://static.igem.org/mediawiki/2014/c/c0/IGEM_logo_spinning_nevada_igem_2014.gif" height="80" width="100"></a></div>
+
                     <div class="btn btn-lg" id="logo"><a href = "https://igem.org/Main_Page"><img src = "https://static.igem.org/mediawiki/2014/c/c0/IGEM_logo_spinning_nevada_igem_2014.gif" height="80" width="160"></a></div>
 
                      
 
                      
 
               </div>
 
               </div>

Revision as of 09:20, 6 September 2015


Producing a Novel Antimicrobial Surface-Binding Peptide Using an Improved T7 Expression System

Biofilm formation on surfaces is an issue in the medical field, naval industry, and other areas. We developed an anti-fouling peptide with two modular components: a mussel adhesion protein (MAP) anchor and LL-37, an antimicrobial peptide. MAPs can selectively attach to metal and organic surfaces via L-3,5-dihydroxyphenylalanine (L-DOPA), a nonstandard amino acid that was incorporated using a genetically recoded organism (GRO). Because this peptide is toxic to the GRO in which it is produced, we designed a better controlled inducible system that limits basal expression. This was achieved through a novel T7 riboregulation system that controls expression at both the transcriptional and translational levels. This improved system is a precise synthetic switch for the expression of cytotoxic substances in the already robust T7 system. Lastly, the antimicrobial surface-binding peptide was assayed for functionality.