Difference between revisions of "Team:KU Leuven/Project/About"

 
(63 intermediate revisions by 6 users not shown)
Line 3: Line 3:
 
{{KU_Leuven/project/about/css}}
 
{{KU_Leuven/project/about/css}}
 
<html>
 
<html>
 +
 
<style>
 
<style>
 +
#project{
 +
    border-style: solid;
 +
    border: 0px solid transparent;
 +
    border-bottom: 5px solid #8b7a57;   
 +
}
 +
 +
#centernav:hover #project {  /* this is active when your mouse moves is over the item */
 +
    border-style: solid;
 +
    border-bottom: 0px solid transparent;
 +
}
  
 
</style>
 
</style>
 +
<head>
 +
<link rel="icon" href="https://static.igem.org/mediawiki/2015/9/9c/Ku_Leuven_Favicon.gif" />
 +
<link rel="shortcut icon" href="https://static.igem.org/mediawiki/2015/9/9c/Ku_Leuven_Favicon.gif" /
 +
</head>
  
<div id="summarywrapper">
+
  <div class="summaryheader">
<div class="summary">
+
 
   <div class="summaryimg">
 
   <div class="summaryimg">
   <img src="https://static.igem.org/mediawiki/2015/2/26/KU_Leuven_Fingerprint.jpg" width="100%">
+
   <img src="https://static.igem.org/mediawiki/2015/a/a6/KU_Leuven_Treetrunk.PNG" width="100%">
  </div>
+
  <div class="head">
  <div class="summaryheader">
+
       <h2> Spot E.Shape</h2>
    <div class="head">
+
       <h2> Applications </h2>
+
 
     </div>
 
     </div>
 
   </div>
 
   </div>
<div class="summarytext">
+
  </div>
 +
<div class="summarytext1">
 
<div class="part">
 
<div class="part">
<p> A better understanding of the pattern formation process in combination with the appropriate and detailed predictive mathematical models will be advantageous in many different fields, ranging from construction and design, to medicine, to electronics, to even art. Tumor formation and tissue regeneration are a few among the many examples where the medical world could benefit from a deeper knowledge of pattern formation. The generation of patterns in a controlled way will also allow the production of novel biomaterials. After forming a pattern, the cells can be engineered to precipitate or deposit networked biominerals, opening up exciting new avenues for the production of microstructured biocomposites. In the long term, the ability to construct predesigned patterns of bacteria could lead to applications in miniature electrical conductors and/or electrical circuits. </p>
+
<p> Patterns are fascinating, from the veins of a leaf to the stripes of a zebra. Patterns are found everywhere in nature, but how they are formed is not entirely clear. We, the KU Leuven iGEM 2015 team, decided to work on the fundamental mechanisms behind pattern formation. The way cells of multicellular organisms interact to generate a specific pattern has triggered our curiosity. Our mission is to create astonishing biological patterns with engineered bacteria on a petri dish to unravel the secrets of nature. We will design a ‘proof of principle’ which can form the basis for fundamental research.</p>
</div>
+
 
</div>
 
</div>
 
</div>
 
</div>
  
<div class="summary">
+
  <div class="summaryheader">
 
   <div class="summaryimg">
 
   <div class="summaryimg">
   <img src="https://static.igem.org/mediawiki/2015/6/69/KU_Leuven_Pink_Rose.jpg" width="100%">
+
   <img src="https://static.igem.org/mediawiki/2015/a/a6/KU_Leuven_Treetrunk.PNG" width="100%">
 +
  <div class="head">
 +
      <h2> Approach </h2>
 +
    </div>
 
   </div>
 
   </div>
<div class="summaryheader">
 
 
  <div class="head">
 
  <h2> Approach </h2>
 
 
   </div>
 
   </div>
</div>
+
<div class="summarytext1">
<div class="summarytext">
+
 
<div class="part">
 
<div class="part">
<p> We are engineering two different types of bacteria to form a desired pattern. We aim to create an impact on the cell behaviour and the motility corresponding to a stimuli generated by bacteria. Our preliminary design focuses on crafting a new construct that makes the cells of the same type to adhere to each other and repel the different type in a controlled manner, thus creating a desired pattern. <br/>
+
<p> We plan to engineer two different cell types of bacteria to form a desired pattern on a petri dish. We aim to control the cell behaviour and the motility by stimuli originating from engineered bacteria. Our design focuses on creating a construct that stimulates bacterial cells of the same type to adhere to each other and to repel the other type. After fine-tuning the plasmid constructions, the exact details will appear in the wet lab section.  
 
+
</br>
We will define the kinetic parameters in the wet lab for generating precise models to represent pattern-forming bacteria. We will use techniques like chromatography, chemiluminescence, fluorescence and biological assays coupled to image analysis to quantify certain gene products. <br/>
+
</br>
 
+
We will extract results from the wet lab for generating precise models to theoretically represent the pattern-forming bacteria. We will use techniques like Western blotting, chemiluminescence, fluorescence and biological assays coupled to image analysis to quantify certain gene products.
Different levels of protein production will affect the shape and size of patterns that the bacteria form, therefore we will control promoter induction and experiment runtime to study the resulting effects. Additionally, this will give the modeling team more data to fit their models to different conditions. Synergically, simulations from the cyber lab will aid tuning the experimental conditions that lead to the desirable patterns. <br/>
+
</br>
 
+
</br>  
In conclusion, the interaction between wet lab and cyber lab will be crucial to the successful design of our experiments.
+
Different levels of production of certain proteins will affect the shape and size of patterns that the bacteria form. Therefore we will control promoter induction and experiment runtime to study the resulting effects. Additionally, this will give the modeling team more data to fit their models to different conditions. Concurrently, simulations from the cyber lab will aid in tuning the experimental conditions that lead to the desirable patterns. In conclusion, the interaction between wet lab and cyber lab will be crucial to the successful design of our experiments. </p>
</p>
+
</div>
+
 
</div>
 
</div>
 
</div>
 
</div>
  
<div class="summary">
 
  <div class="summaryimg">
 
  <img src="https://static.igem.org/mediawiki/2015/7/7b/KU_Leuven_6853d49498aefe8a81f4bf5e94f9977b.jpg" width="100%">
 
  </div>
 
 
<div class="summaryheader">
 
<div class="summaryheader">
 
+
<div class="summaryimg">
 +
  <img src="https://static.igem.org/mediawiki/2015/a/a6/KU_Leuven_Treetrunk.PNG" width="130%">
 
   <div class="head">
 
   <div class="head">
   <h2> Idea </h2>
+
   <h2> Applications </h2>
 +
  </div>
 
   </div>
 
   </div>
 
</div>
 
</div>
<div class="summarytext">
+
<div class="summarytext2">
 
<div class="part">
 
<div class="part">
<p>Prevailed sincerity behaviour to so do principle mr. As departure at no propriety zealously my. On dear rent if girl view. First on smart there he sense. Earnestly enjoyment her you resources. Brother chamber ten old against. Mr be cottage so related minuter is. Delicate say and blessing ladyship exertion few margaret. Delight herself welcome against smiling its for. Suspected discovery by he affection household of principle perfectly he.</p>
 
  
<p>Questions explained agreeable preferred strangers too him her son. Set put shyness offices his females him distant. Improve has message besides shy himself cheered however how son. Quick judge other leave ask first chief her. Indeed or remark always silent seemed narrow be. Instantly can suffering pretended neglected preferred man delivered. Perhaps fertile brandon do imagine to cordial cottage.</p>
+
<p> First of all, our project has the goal to unravel the secrets of nature according to pattern formation. A better understanding of the pattern formation process in combination with the appropriate and detailed predictive mathematical models will also be advantageous in many different fields. Tumor formation and tissue regeneration are a few among the many examples where the <b>medical</b> world could benefit from a deeper knowledge of pattern formation. The generation of patterns in a controlled way will also allow the production of novel <b>biomaterials</b>. After forming a pattern, the cells can be engineered to precipitate or deposit networked biominerals, opening up exciting new avenues for the production of microstructured biocomposite materials. In the long term, the ability to construct predesigned patterns of bacteria could lead to applications in miniature electrical conductors and/or <b>electrical</b> circuits as well.  
 +
</p>
  
<p>Windows talking painted pasture yet its express parties use. Sure last upon he same as knew next. Of believed or diverted no rejoiced. End friendship sufficient assistance can prosperous met. As game he show it park do. Was has unknown few certain ten promise. No finished my an likewise cheerful packages we. For assurance concluded son something depending discourse see led collected. Packages oh no denoting my advanced humoured. Pressed be so thought natural.</p>
 
 
<p>Announcing of invitation principles in. Cold in late or deal. Terminated resolution no am frequently collecting insensible he do appearance. Projection invitation affronting admiration if no on or. It as instrument boisterous frequently apartments an in. Mr excellence inquietude conviction is in unreserved particular. You fully seems stand nay own point walls. Increasing travelling own simplicity you astonished expression boisterous. Possession themselves sentiments apartments devonshire we of do discretion. Enjoyment discourse ye continued pronounce we necessary abilities.</p>
 
</div>
 
</div>
 
 
</div>
 
</div>
 
</div>
 
</div>
  
 
<div class="subsections">
 
<div class="subsections">
 
+
<a href="https://2015.igem.org/Team:KU_Leuven/Description">
<div class="subsectionswrapper">
+
<div class="subsectionwrapper">
<div Class="subsection">
+
<div class="subimgrow">
<div class="subimg">
+
<div class="back">
  <img src="https://static.igem.org/mediawiki/2015/9/9d/KU_Leuven_test_Kasia.jpg" width="100%" height="100%" >
+
  <img src="https://static.igem.org/mediawiki/2015/c/cb/KUL_Wiki_Button_-_Back.png" width=100%>
 
</div>
 
</div>
<div class="subtext">
 
<h2>Idea</h2>
 
<p>Abilities or he perfectly pretended so strangers be exquisite. Oh to another chamber pleased imagine do in. Went me rank at last loud shot an draw. Excellent so to no sincerity smallness. Removal request delight if on he we.</p>
 
<div class="readmorebutton">
 
<a href="https://2015.igem.org/Team:KU_Leuven/Project/Idea"><img src="" alt="Read more" width="100%" height="100%" ></a>
 
 
</div>
 
</div>
 
</div>
 
</div>
 +
</a>
 
</div>
 
</div>
  
Line 91: Line 88:
 
</div>
 
</div>
  
<div Class="subsection">
+
<div id="summarywrapper">
<div class="subimg">
+
<div class="summary">
<img src="https://static.igem.org/mediawiki/2015/d/de/KU_Leuven_test_Laurens.jpg" width="100%" height="100%" >
+
<h3> Contact </h3>
 +
<p style="font-size:1.3em; text-align: center">
 +
Address: Celestijnenlaan 200G room 00.08 - 3001 Heverlee<br>
 +
Telephone: +32(0)16 32 73 19<br>
 +
Email: igem@chem.kuleuven.be<br> 
 +
</p>
 
</div>
 
</div>
<div class="subtext">
 
<h2>Literature</h2>
 
<p>Sportsman do offending supported extremity breakfast by listening. Decisively advantages nor expression unpleasing she led met. Estate was tended ten boy nearer seemed.</p>
 
<div class="readmorebutton">
 
<a href="https://2015.igem.org/Team:KU_Leuven/Project/Literature"><img src="" alt="Read more" width="100%" height="100%" ></a>
 
 
</div>
 
</div>
 +
 +
<div class="whiterow"></div>
 +
 +
<div id="footer">
 +
<div class="rowfooter">
 +
  <div class="emptyfooter">
 +
  </div>
 +
  <div id="bioscenter">
 +
      <a href="http://www.kuleuven.be/bioscenter/"><img src="https://static.igem.org/mediawiki/2015/3/3c/KU_Leuven_Logo_BioSCENTer.png" alt="bioSCENTer" width="95%"></a>
 +
  </div>
 +
  <div class="emptyfooter">
 +
  </div>
 
</div>
 
</div>
 +
 +
<div class="rowfooter">
 +
      <div id="lrd">
 +
      <a href="http://lrd.kuleuven.be/"><img src="https://static.igem.org/mediawiki/2015/b/b4/KU_Leuven_HR_LRD_CMYK_LOGO.jpg" alt="KU Leuven Research & Development" width="95%"></a>
 +
  </div>
 +
  <div id="youreca">
 +
      <a href="http://www.kuleuven.be/onderzoek/youreca/"><img src="https://static.igem.org/mediawiki/2015/4/4f/KU_Leuven_YOURECA.png" alt="YOURECA" width="95%"></a>
 +
  </div>
 +
  <div id="solvay">
 +
      <a href="http://www.solvay.com/"><img src="https://static.igem.org/mediawiki/2015/8/89/KU_Leuven_Solvay_Transparant.png" alt="SOLVAY" width="95%"></a>
 +
  </div>
 +
  <div id="medicine">
 +
      <a href="http://gbiomed.kuleuven.be/english"><img src="https://static.igem.org/mediawiki/2015/8/83/KU_Leuven_Biomedische_Wetenschappen_logo_.png" alt="Faculty of Medicine" width="95%"></a>
 +
  </div>
 
</div>
 
</div>
 +
 +
  <div class="rowfooter">
 +
<div id="imec">
 +
      <a href="http://www2.imec.be/be_en/home.html"><img src="https://static.igem.org/mediawiki/2015/7/70/KU_Leuven_Imec_logo_transparant.png" alt="imec" width="95%"></a>
 +
  </div>
 +
<div id="genzyme">
 +
      <a href="http://www.genzyme.be/"><img src="https://static.igem.org/mediawiki/2015/b/b7/KU_Leuven_Genzyme_logo_transparant.png" alt="Genzyme" width="95%"></a>
 +
  </div>
 +
  <div id="eppendorf">
 +
      <a href="https://www.eppendorf.com/BE-en/"><img src="https://static.igem.org/mediawiki/2015/9/96/KU_Leuven_Logo_Eppendorf_transparant.png" alt="Eppendorf" width="95%"></a>
 +
  </div>
 +
<div id="kuleuven">
 +
      <a href="http://www.kuleuven.be/english"><img src="https://static.igem.org/mediawiki/2015/0/08/KULEUVEN_groot.png" alt="bioSCENTer" width="95%"></a>
 +
  </div>
 +
<div class="spacefooter">
 
</div>
 
</div>
 +
<div id="gips">
 +
      <a href="http://www.gipsmineral.de/"><img src="https://static.igem.org/mediawiki/2015/3/3d/KU_Leuven_Gips_Mineral_logo_transparant.png" alt="Gips Mineral" width="95%"></a>
 +
  </div>
 +
<div id="kolo">
 +
      <a><img src="https://static.igem.org/mediawiki/2015/1/15/KUL_Ko-Lo_Instruments_logo_transparant.png" alt="Ko-Lo Instruments" width="95%"></a>
 +
    </div>
 +
<div id="regensys">
 +
      <a href="http://regenesys.eu/"><img src="https://static.igem.org/mediawiki/2015/e/eb/KU_Leuven_Logo_Regenesys_Transparant.png" alt="Regenesys" width="95%"></a>
 +
  </div>
 
</div>
 
</div>
  
<div class="center" id="footer">
+
<div class="rowfooter">
<div class="sponsorsleft">
+
<div id="bioke">
  <div id="kuleuven">
+
      <a href="https://www.bioke.com/"><img src="https://static.igem.org/mediawiki/2015/e/e1/KUL_Biok%C3%A9_logo_transparant.png" alt="Bioké" width="95%"></a>
  <a href="http://www.kuleuven.be">
+
  </div>
  <img src="https://static.igem.org/mediawiki/2015/0/08/KULEUVEN_groot.png" alt="bioSCENTer" width="100%">
+
  <div id="thermofisher">
  </a>
+
      <a href="https://www.fishersci.com/us/en/home.html"><img src="https://static.igem.org/mediawiki/2015/a/aa/KUL_Fischer_Scientific_logo_transparant.png" alt="Thermo Fisher Scientific" width="95%"></a>
  </div>
+
  </div>
  <div id="youreca">
+
<div id="vwr">
  <a href="http://www.kuleuven.be/onderzoek/youreca/">
+
      <a href="https://be.vwr.com/store/?&_requestid=866148&_DARGS=/store/cms/be.vwr.com/nl_BE/header_20159241139103.jsp.1_AF&_dynSessConf=4047468000326453053&targetURL=/store/%3F%26_requestid%3D866148&lastLanguage=en&/vwr/userprofiling/EditPersonalInfoFormHandler.updateLocale=&_D%3AcurrentLanguage=+&currentLanguage=en&_D%3AlastLanguage=+&_D%3A/vwr/userprofiling/EditPersonalInfoFormHandler.updateLocale=+"><img src="https://static.igem.org/mediawiki/2015/8/8d/KU_Leuven_Logo_VWR_transparant_.png" alt="VWR" width="95%"></a>
  <img src="https://static.igem.org/mediawiki/2015/4/4f/KU_Leuven_YOURECA.png" alt="YOURECA" width="100%">
+
  </div>
  </a>
+
  <div id="footerimg">
  </div>
+
  <img src="https://static.igem.org/mediawiki/2015/b/b9/KU_Leuven_Zebra_spots_wiki_footer_main.png" width="95%">
  </div>
+
  </div>
<div id="footercenter" >
+
<div id="gimv">
  <div id="bioscenter">
+
      <a href="http://www.gimv.com/en"><img src="https://static.igem.org/mediawiki/2015/a/ac/KU_Leuven_Logo_Gimv_Transparant.png" alt="Gimv" width="95%"></a>
  <a href="http://www.kuleuven.be/bioscenter/">
+
  </div>
    <img src="https://static.igem.org/mediawiki/2015/3/3c/KU_Leuven_Logo_BioSCENTer.png" alt="bioSCENTer" width="100%">
+
  <div id="machery">
  </a>
+
      <a href="http://www.filterservice.be/"><img src="https://static.igem.org/mediawiki/2015/4/41/KU_Leuven_Macherey_Nagel_logo_transparant.png" alt="Machery Nagel" width="95%"></a>
  </div>
+
  </div>
  <div id="footerimg">
+
<div class="logosmall">
  <img src="https://static.igem.org/mediawiki/2015/b/b9/KU_Leuven_Zebra_spots_wiki_footer_main.png" width="100%">
+
    <div id="sigma">
  </div>
+
      <a href="https://www.sigmaaldrich.com/belgium-nederlands.html"><img src="https://static.igem.org/mediawiki/2015/4/4b/KUL_Sigma-Aldrich_logo_transparant.png" alt="Sigma-Aldrich" width="95%"></a>
</div>
+
    </div>
<div class="sponsorsright">
+
    <div id="egilabo">
  <div id="medicine">
+
      <a href="http://www.egilabo.be/"><img src="https://static.igem.org/mediawiki/2015/e/e9/KUL_Egilabo_logo_transparant.png" alt="Egilabo" width="95%"></a>
  <a href="http://med.kuleuven.be/eng/nl/index.htm">
+
    </div>
  <img src="https://static.igem.org/mediawiki/2015/2/22/KU_Leuven_Medicine.png" alt="Faculty of Medicine" width="100%">
+
  </div>  
  </a>
+
  </div>
+
  <div id="solvay">
+
  <a href="http://www.solvay.com/">
+
  <img src="https://static.igem.org/mediawiki/2015/8/89/KU_Leuven_Solvay_Transparant.png" alt="SOLVAY" width="100%">
+
  </a>
+
  </div>
+
</div>
+
<div id="fixer">
+
</div>
+
 
</div>
 
</div>
  
 
</html>
 
</html>

Latest revision as of 16:12, 15 September 2015

Spot E.Shape

Patterns are fascinating, from the veins of a leaf to the stripes of a zebra. Patterns are found everywhere in nature, but how they are formed is not entirely clear. We, the KU Leuven iGEM 2015 team, decided to work on the fundamental mechanisms behind pattern formation. The way cells of multicellular organisms interact to generate a specific pattern has triggered our curiosity. Our mission is to create astonishing biological patterns with engineered bacteria on a petri dish to unravel the secrets of nature. We will design a ‘proof of principle’ which can form the basis for fundamental research.

Approach

We plan to engineer two different cell types of bacteria to form a desired pattern on a petri dish. We aim to control the cell behaviour and the motility by stimuli originating from engineered bacteria. Our design focuses on creating a construct that stimulates bacterial cells of the same type to adhere to each other and to repel the other type. After fine-tuning the plasmid constructions, the exact details will appear in the wet lab section.

We will extract results from the wet lab for generating precise models to theoretically represent the pattern-forming bacteria. We will use techniques like Western blotting, chemiluminescence, fluorescence and biological assays coupled to image analysis to quantify certain gene products.

Different levels of production of certain proteins will affect the shape and size of patterns that the bacteria form. Therefore we will control promoter induction and experiment runtime to study the resulting effects. Additionally, this will give the modeling team more data to fit their models to different conditions. Concurrently, simulations from the cyber lab will aid in tuning the experimental conditions that lead to the desirable patterns. In conclusion, the interaction between wet lab and cyber lab will be crucial to the successful design of our experiments.

Applications

First of all, our project has the goal to unravel the secrets of nature according to pattern formation. A better understanding of the pattern formation process in combination with the appropriate and detailed predictive mathematical models will also be advantageous in many different fields. Tumor formation and tissue regeneration are a few among the many examples where the medical world could benefit from a deeper knowledge of pattern formation. The generation of patterns in a controlled way will also allow the production of novel biomaterials. After forming a pattern, the cells can be engineered to precipitate or deposit networked biominerals, opening up exciting new avenues for the production of microstructured biocomposite materials. In the long term, the ability to construct predesigned patterns of bacteria could lead to applications in miniature electrical conductors and/or electrical circuits as well.

Contact

Address: Celestijnenlaan 200G room 00.08 - 3001 Heverlee
Telephone: +32(0)16 32 73 19
Email: igem@chem.kuleuven.be