|
|
(35 intermediate revisions by 4 users not shown) |
Line 10: |
Line 10: |
| </style> | | </style> |
| </head> | | </head> |
| + | |
| + | |
| | | |
| <section align="center"> | | <section align="center"> |
| | | |
− | <h3> Project Results</h3>
| + | |
| | | |
| | | |
Line 57: |
Line 59: |
| <br>✵We worked also on LB medium because this is the most common medium used in the laboratory.</p> | | <br>✵We worked also on LB medium because this is the most common medium used in the laboratory.</p> |
| <p class="reference" align="left"> [1] Dae-Young J, Young-Su C. <i> Improved production of Curdlan with concentrated cells of Agrobacterium sp. </i> Biotechnol. Bioprocess Eng. 2001,6:107-111 </p> | | <p class="reference" align="left"> [1] Dae-Young J, Young-Su C. <i> Improved production of Curdlan with concentrated cells of Agrobacterium sp. </i> Biotechnol. Bioprocess Eng. 2001,6:107-111 </p> |
− | <div class="col-lg-6"> <br> <br> <br>
| |
− | <p align="justify"><u>Figure 2.</u> Optical Densities were analysed each hour after culture inoculation. <br> As we can see, the growth is much lower in M63 than in LB medium.
| |
− | <br>✵ For LB medium, we obtained 0.8 OD after 5h.
| |
− | <br>✵ For M63 medium, 0.8 OD is obtained much later.
| |
− | <br>→ So, entire process of production goes on 2 days in LB medium and 3 days in M63 medium.</p>
| |
− | </div>
| |
| | | |
| + | <div class="col-lg-6"> <br> <br> <br> |
| + | <p align="justify"><u>Figure 2.</u> Optical Densities were analysed each hour after culture inoculation. <br> As we can see, the growth is much lower in M63 than in LB medium. |
| + | <br>✵ For LB medium, we obtained 0.8 OD after 5h. |
| + | <br>✵ For M63 medium, 0.8 OD is obtained much later. |
| + | <br>→ So, entire process of production goes on 2 days in LB medium and 3 days in M63 medium.</p> |
| + | </div> |
| + | |
| <div class="col-lg-6"> | | <div class="col-lg-6"> |
| <img style="width:35vw;height:20vw" src="https://static.igem.org/mediawiki/2015/thumb/4/4e/Bordeaux_Team_Bacteria_growthV3.png/800px-Bordeaux_Team_Bacteria_growthV3.png"> | | <img style="width:35vw;height:20vw" src="https://static.igem.org/mediawiki/2015/thumb/4/4e/Bordeaux_Team_Bacteria_growthV3.png/800px-Bordeaux_Team_Bacteria_growthV3.png"> |
Line 69: |
Line 72: |
| </div> | | </div> |
| | | |
− | </div>
| + | </div> |
− | </div>
| + | </div> |
| + | |
| | | |
| <!-- LABORATORY WORK ------------------------------------------------------------------------------------------- --> | | <!-- LABORATORY WORK ------------------------------------------------------------------------------------------- --> |
Line 76: |
Line 80: |
| <div class="content-wrapper"> | | <div class="content-wrapper"> |
| <div class="col-lg-10 col-lg-offset-1"> | | <div class="col-lg-10 col-lg-offset-1"> |
− |
| |
| | | |
− | <h5 align="center"><b>LABORATORY WORK</b></h5> | + | <h5 align="center"><b>LABORATORY WORK</b></h5> |
| | | |
− | <div class="col-lg-6">
| + | <div class="col-lg-6"> |
− | <h6 align="center">1.Cloning</h6> | + | <h6 align="center">1.Cloning</h6> |
− | <p align="justify">To achieve our Curdlan production by <i>Escherichia coli</i>, it was necessary to integrate our interest gene <i>crdS</i> controlled by the promoter <i>OsmY</i> in two types of plasmids: | + | <p align="justify">To achieve our Curdlan production by <i>Escherichia coli</i>, it was necessary to integrate our interest gene <i>crdS</i> controlled by the promoter <i>OsmY</i> in two types of plasmids: |
− | <br>✵ in pSB1C3 plasmid for the characterization of our biobricks | + | <br>✵ in pSB1C3 plasmid for the characterization of our biobricks |
− | <br>• <i>OsmY</i> promoter only
| + | <br>• <i>OsmY</i> promoter only |
− | <br>• <i>crdS</i> gene only
| + | <br>• <i>crdS</i> gene only |
− | <br>• promoter and gene
| + | <br>• promoter and gene |
− | <br>✵ in pUC for production steps | + | <br>✵ in pUC for production steps |
− | <br>• promoter and gene</p>
| + | <br>• promoter and gene</p> |
− | <br> <br> | + | <br> <br> |
− | <h6 align="center">3.Curdlan production</h6> | + | <h6 align="center">3.Curdlan production</h6> |
− | <p align="justify"> </p> | + | <p align="justify"> The production is done on two steps (in two Erlenmeyer flasks) in order to scale up bacterial biomass and then, to obtain a lot of Curdlan. </p> |
− | <img style="width:20vw;height:20vw" src="https://static.igem.org/mediawiki/2015/9/9f/Erlen_production.png"> | + | <p align="justify"> In stationary phase, we proceed to a temperature change in order to minimize the persistent bacterial growth, the Curdlan being a secondary metabolite. </p> |
− | <h6 align="center">4.Purification and Quantitative analysis</h6>
| + | <img style="width:20vw;height:20vw" src="https://static.igem.org/mediawiki/2015/9/9f/Erlen_production.png"> |
− | <p align="justify"> To obtain Curdlan, cells were chemically destroyed by NaOH and many centrifugations.
| + | </div> |
− | <br> Curdlan purification was performed by neutralization after adding acetic acid.
| + | |
− | <br> Quantitative analysis was done before and after purification to compare and eliminate non significant measures (background signal). </p>
| + | |
− | <p align="justify">N.B. Also, we use a polarimeter to characterize our Curdlan molecule produced. </p>
| + | |
− | </div> | + | |
| | | |
− | <div class="col-lg-6">
| + | <div class="col-lg-6"> |
| + | <h6 align="center">2.Transformation</h6> |
| + | <p align="justify">These plasmids are then transferred into competent bacteria <i>E. coli DH5α</i> by transformation. The selection of transformed bacteria is done by chloramphenicol resistance for pSB1C3 plasmid and by ampicillin resistance for pUC plasmid. </p> |
| + | <br> |
| + | <p align="justify">To check that cloning work, plasmids are digested with EcoR1 and Pst1 restriction enzymes. </p> |
| + | <img style="width:13vw;height:20vw" src="https://static.igem.org/mediawiki/2015/4/44/Agarose_electrophoresis_gel_V2.png"> |
| + | <p class="reference" align ="center"> <b> Figure 3:Agarose electrophoresis gel </b> </p> |
| + | <br><p align="justify"><u>Figure 3.</u> As we can see, the band corresponding to the piece of linearized plasmid containing <i>OsmY</i> promoter and <i>crdS</i> gene is a bit higher than the band corresponding to the piece of linearized plasmid containing <i>crdS</i> gene only. </p> |
| + | </div> |
| | | |
− | <h6 align="center">2.Transformation</h6>
| + | </div> |
− | <p align="justify">These plasmids are then transferred into competent bacteria <i>E. coli DH5α</i> by transformation. The selection of transformed bacteria is done by chloramphenicol resistance for pSB1C3 plasmid and by ampicillin resistance for pUC plasmid. </p>
| + | </div> |
− | <br>
| + | |
− | <p align="justify">To check that cloning work, plasmids are digested with EcoR1 and Pst1 restriction enzymes. </p>
| + | |
− | <img style="width:15vw;height:20vw" src="https://static.igem.org/mediawiki/2015/4/44/Agarose_electrophoresis_gel_V2.png">
| + | |
− | <p class="reference" align ="center"> <b> Figure 3:Agarose electrophoresis gel </b> </p>
| + | |
− | <br><p align="justify"><u>Figure 3.</u> As we can see, the band corresponding to the piece of linearized plasmid containing <i>OsmY</i> promoter and <i>crdS</i> gene is a bit higher than the band corresponding to the piece of linearized plasmid containing <i>crdS</i> gene only. </p>
| + | |
− | </div> | + | |
− | <br>
| + | |
− | <br>
| + | |
− | <br>
| + | |
− | | + | |
− | | + | |
− | | + | |
− | </div>
| + | |
− | </div>
| + | |
− | | + | |
− | <!-- RESULTS ------------------------------------------------------------------------------------------- -->
| + | |
| | | |
| <div class="content-wrapper"> | | <div class="content-wrapper"> |
| <div class="col-lg-10 col-lg-offset-1"> | | <div class="col-lg-10 col-lg-offset-1"> |
| | | |
− | <h5 align="center"> <b><i>E. coli</i> RESULTS </b></h5> | + | <h6 align="center">4.Purification and Quantitative analysis</h6> |
− | <br>
| + | <p align="justify"> To obtain Curdlan, cells were chemically destroyed by NaOH and many centrifugations. |
− | <p align="justify">We produced some Curdlan compared to non transformed strain of <i>DH5α</i>. We analyzed data with a student test to prove our results are significant. The theoretical concentration obtained in the Control condition corresponds to the non significant measure (background signal). | + | <br> Curdlan purification was performed by neutralization after adding acetic acid. |
− | <br>
| + | <br> Quantitative analysis was done before and after purification to compare and eliminate non significant measures (background signal). </p> |
− | N.B. We realized these figures by doing the average of all production results in each medium.</p>
| + | <p align="justify">N.B. Also, we use a polarimeter to characterize our Curdlan molecule produced. </p> |
− | <br>
| + | |
− | <img style="width:55vw;height:20vw"src="https://static.igem.org/mediawiki/2015/thumb/4/49/BordeauxTeam_Mix_LB_and_M63_resultsV3.png/800px-BordeauxTeam_Mix_LB_and_M63_resultsV3.png">
| + | |
− | <p class="reference" align ="center"> <b> Figure 5: Quantitative analysis of purified Curdlan with aniline blue</b> </p> | + | |
| | | |
− | <p align="justify"> → Each medium can be used for the Curdlan production. But, we can’t compare these two results and say that produced Curdlan quantity is higher in LB than in M63 medium because productions are not realized at the same time in these cases.</p> | + | </div> |
| + | </div> |
| + | </div> |
| | | |
− | <p align="justify"> In following results, we have studied production in M63 and LB media started at the same time. </p> | + | <!-- ------------------------------------------------------------------------------------------ --> |
− | <br>
| + | |
− | <img style="width:32vw;height:20vw" src="https://static.igem.org/mediawiki/2015/2/23/Bordeaux_Team_LB_and_M63_resultsV2.png">
| + | |
− | <p class="reference" align ="center"> <b> Figure 6: Quantitative analysis of purified Curdlan with aniline blue</b> </p>
| + | |
| | | |
− | <p align="justify"> → Now, thanks to a statistic test, we can conclude that Curdlan production is doubled in LB medium compared to M63 medium. </p>
| |
− | <p align="justify"> LB medium has an unknown glucose concentration contained in yeast extract whereas in M63 medium we have controled this parameter. We suppose that LB glucose concentration is higher than in the second medium. That will be explain the difference between these two conditions. </p>
| |
| | | |
− | <p align="justify"> However, compared to <i>Saccharomyces cerevisiae</i>, our results are very low: about 10 to 20µg/mL for Bacteria to 100µg/mL for Yeast. </p> | + | <div class="col-lg-10 col-lg-offset-1"> |
− | <p align="justify"> We have tried some optimization protocols but without success.
| + | <center> |
− | <br>XXX à finir XXX </p> | + | <h6> <a href= "http://https://2015.igem.org/Team:Bordeaux/Description" style=" color: #FF5E00;"> Description ☚ </a> Previous Page . Next Page <a href= "https://2015.igem.org/Team:Bordeaux/AchievementsNotebook" style=" color: #FF5E00;"> ☛ Notebook </h6> |
− | <br>
| + | </center> |
− | <h6 align="center"> Characterization </h6> | + | </div> </div> |
− | <p align="justify"> Part 1. To verify <i>OsmY</i> promoter is only active in the stationary phase, we realized Curdlan quantitative analysis every hour of a culture in LB medium. The switch of temperature for the culture is linked to the transition in stationary phase.
| + | |
− | <br>→ As we can see, Curdlan appears after the switch at 27°C. So, <i>OsmY</i> promoter is active in stationary phase only. <b>(Fig.7)<b></p>
| + | |
− | <img style="width:45vw;height:30vw" src="https://static.igem.org/mediawiki/2015/thumb/1/16/Bordeaux_Team_promoter_characterizationV4.png/800px-Bordeaux_Team_promoter_characterizationV4.png">
| + | |
− | <p class="reference" align ="center"> <b> Figure 7: <i>OsmY</i> promoter characterization <br> </p>
| + | |
− | <br>
| + | |
− | <p align="justify"> Part 2. To verify produced molecule is Curdlan, we analysed samples with a polarimeter. The reference used was Curdlan bought to do standard range for the quantitative analysis with aniline blue.</p>
| + | |
− | <p align="justify">A substance is optically active or has a rotatory power when it deflects polarization plane of light from an <i>α</i> angle. This rotatory power is related to the presence of one or more asymmetric carbon within the molecule. All sugars (except dihydroxyacetone) are chiral molecules, so they all have a rotatory power. This property allows the polarimetric determination of sugars in pure solution thanks to the law of Biot. </p>
| + | |
− | <p align="justify"> There are two types of optically active substances:
| + | |
− | <br>✵Those which deflect polarization plane of light from an <i>α</i> angle to the right. The measured angle is positive and the substance is in dextrorotatory form.
| + | |
− | <br>✵Those which deflect polarization plane of light from an <i>α</i> angle to the left. The measured angle is negative and the substance is in levorotatory form. </p>
| + | |
− | <p align="justify"> <u>Results</u>
| + | |
− | <br>– Results were obtained with a Jasco P-2000 polarimeter.
| + | |
− | <br>– Measures are done at 25°C. </p>
| + | |
− | <style type="text/css">
| + | |
− | .tg {border-collapse:collapse;border-spacing:0;border-color:#aaa;border-width:1px;border-style:solid;}
| + | |
− | .tg td{font-family:Arial, sans-serif;font-size:14px;padding:10px 5px;border-style:solid;border-width:0px;overflow:hidden;word-break:normal;border-color:#aaa;color:#333;background-color:#fff;}
| + | |
− | .tg th{font-family:Arial, sans-serif;font-size:14px;font-weight:normal;padding:10px 5px;border-style:solid;border-width:0px;overflow:hidden;word-break:normal;border-color:#aaa;color:#fff;background-color:#f38630;}
| + | |
− | .tg .tg-d77s{font-weight:bold;background-color:#ddffc5;color:#000000;text-align:center}
| + | |
− | .tg .tg-5tuf{background-color:#ddffc5;color:#000000;text-align:center}
| + | |
− | .tg .tg-k3mp{font-weight:bold;color:#000000;text-align:center}
| + | |
− | .tg .tg-nudq{color:#000000;text-align:center}
| + | |
− | </style>
| + | |
− | <table class="tg">
| + | |
− | <tr>
| + | |
− | <th class="tg-5tuf"></th>
| + | |
− | <th class="tg-d77s">Optical rotation monitor</th>
| + | |
− | </tr>
| + | |
− | <tr>
| + | |
− | <td class="tg-k3mp">Reference</td>
| + | |
− | <td class="tg-nudq">-0.2002</td>
| + | |
− | </tr>
| + | |
− | <tr>
| + | |
− | <td class="tg-k3mp">produced Curdlan</td>
| + | |
− | <td class="tg-nudq">-0.1982</td>
| + | |
− | </tr>
| + | |
− | <tr>
| + | |
− | <td class="tg-k3mp">Control </td>
| + | |
− | <td class="tg-nudq">XXX</td>
| + | |
− | </tr>
| + | |
− | </table>
| + | |
− | <br>
| + | |
− | <h6 align="center"> At the end... </h6>
| + | |
− | <p align="center"> <b> We have obtained 3.44g of Curdlan in one month of production and with one single gene! </p>
| + | |
− | <p align="center"> photo à mettre </p>
| + | |
− | <br>
| + | |
− | <h6 align="center">Perspectives</h6>
| + | |
− | <p align="justify">Despite amplification problems of two genes, we performed cloning with the <i>crdA</i> and <i>crdC</i> sequences. Each gene was placed into plasmids possessing resistance to a different antiobiotic:
| + | |
− | <br>✵pUC-OsmY-crdS (Ampicillin resistance)
| + | |
− | <br>✵pSB1C3-OsmY-crdA (Chloramphenicol resistance)
| + | |
− | <br>✵pSB3T5-OsmY-crdC (Tetracycline resistance) | + | |
− | <br> We have tried without success a triple transformation. </p>
| + | |
− | <p align="justify"> We hope that production yield of Curdlan would be higher if the three genes were present. </p> | + | |
| | | |
− | <br>
| |
− |
| |
− | <style type="text/css">
| |
− | .tg {border-collapse:collapse;border-spacing:0;border-color:#aaa;border-width:1px;border-style:solid;}
| |
− | .tg td{font-family:Arial, sans-serif;font-size:14px;padding:13px 13px;border-style:solid;border-width:0px;overflow:hidden;word-break:normal;border-color:#aaa;color:#333;background-color:#fff;}
| |
− | .tg th{font-family:Arial, sans-serif;font-size:14px;font-weight:normal;padding:13px 13px;border-style:solid;border-width:0px;overflow:hidden;word-break:normal;border-color:#aaa;color:#fff;background-color:#f38630;}
| |
− | .tg .tg-s2pp{font-weight:bold;font-family:Arial, Helvetica, sans-serif !important;;background-color:#ddffc5;color:#333333;text-align:center}
| |
− | .tg .tg-431l{font-family:Arial, Helvetica, sans-serif !important;;text-align:center}
| |
− | </style>
| |
− | <table class="tg">
| |
− | <tr>
| |
− | <th class="tg-s2pp">Successful results</th>
| |
− | <th class="tg-s2pp">Unsuccessful results</th>
| |
− | <th class="tg-s2pp">Perspectives</th>
| |
− | </tr>
| |
− | <tr>
| |
− | <td class="tg-431l">PCR amplification of <i>crdS</i></td>
| |
− | <td class="tg-431l">No PCR amplification on <i>crdA</i> and <i>crdC</i> </td>
| |
− | <td class="tg-431l">Sulfation step</td>
| |
− | </tr>
| |
− | <tr>
| |
− | <td class="tg-431l">Cloning in pSB1C3 and pUC</td>
| |
− | <td class="tg-431l">No production with transformed bacteria containing the three genes</td>
| |
− | <td class="tg-431l">Test on other <i>E.coli</i> strain</td>
| |
− | </tr>
| |
− | <tr>
| |
− | <td class="tg-431l">Transformation in <i>DH5a</i> strain</td>
| |
− | <td class="tg-431l">Bad purification method</td>
| |
− | <td class="tg-431l">Optimized Curdlan production protocol</td>
| |
− | </tr>
| |
− | <tr>
| |
− | <td class="tg-431l">Curdlan production and characterization</td>
| |
− | <td class="tg-431l"></td>
| |
− | <td class="tg-431l">Test of produced Curdlan on plants</td>
| |
− | </tr>
| |
− | </table>
| |
− | <br> <br>
| |
− |
| |
− | </div>
| |
| </div> | | </div> |
| + | </section> |
| | | |
− |
| |
− | <h6> <a href= "https://2015.igem.org/Team:Bordeaux/Description" style=" color: #FF5E00;"> Description ☚ </a> Previous Page . Next Page <a href= "https://2015.igem.org/Team:Bordeaux/Team" style=" color: #FF5E00;"> ☛ About our Team</h6>
| |
| </html> | | </html> |
| | | |
| {{:Team:Bordeaux/Template:HomeFooter}} | | {{:Team:Bordeaux/Template:HomeFooter}} |