Difference between revisions of "Team:ZJU-China/Modeling"

 
(46 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{ZJU-China}}
+
{{:Team:ZJU-China/template/head}}
 
<html>
 
<html>
<script src="../common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
 
  
<h2> Modeling</h2>
 
  
<p>$$\frac{\partial {C_{Toxin}}}{\partial t}={\nabla }({{D}_{Toxin}}{{\nabla }}{C_{Toxin}})$$</p>  
+
<link rel="stylesheet" type="text/css" href="https://2015.igem.org/Team:ZJU-China/css/ZJU-bootstrap?action=raw&ctype=text/css" />
When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are
+
<link rel="stylesheet" type="text/css" href="https://2015.igem.org/Team:ZJU-China/css/ZJU-stylesheet?action=raw&ctype=text/css" />
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$
+
<style>
 +
a{
 +
text-decoration:none;
 +
}
 +
a:hover{
 +
text-decoration:none;
 +
}
 +
a:visited {
 +
color:#000;
 +
text-decoration:none;
 +
}
 +
a:active {
  
 +
text-decoration:none;
 +
}
 +
a:link {
  
<div class="highlightBox">
+
text-decoration:none;
<h4>Note</h4>
+
}
<p>In order to be considered for the <a href="https://2015.igem.org/Judging/Awards#SpecialPrizes">Best Model award</a>, you must fill out this page.</p>
+
a:active {
</div>
+
  
 +
text-decoration:none;
 +
}
  
<p>Mathematical models and computer simulations provide a great way to describe the function and operation of BioBrick Parts and Devices. Synthetic Biology is an engineering discipline, and part of engineering is simulation and modeling to determine the behavior of your design before you build it. Designing and simulating can be iterated many times in a computer before moving to the lab. This award is for teams who build a model of their system and use it to inform system design or simulate expected behavior in conjunction with experiments in the wetlab.</p>
 
  
<p>
+
</style>
Here are a few examples from previous teams:
+
</head>
</p>
+
<body id="wrapper">
<ul>
+
<li><a href="https://2014.igem.org/Team:ETH_Zurich/modeling/overview">ETH Zurich 2014</a></li>
+
<li><a href="https://2014.igem.org/Team:Waterloo/Math_Book">Waterloo 2014</a></li>
+
</ul>
+
  
 +
<div id="page-content-wrapper">
 +
   
 +
<div class="div-img" style="min-width: 940px; max-width: 1440px;">
 +
 +
<div style="padding-left:3em;padding-right:3em;padding-top:3%;">
 +
 +
<div class="col-md-3"  style="text-align:center;margin-right:-5%;margin-left:-5%">
 +
<div class="zju-china" >
 +
<img src="https://static.igem.org/mediawiki/2015/d/df/Zju-china.png" class="img-up" ></img>
 +
    </div>
 +
    </div>
 +
 +
<div class="col-md-9" style="text-align:center;">
 +
<div style="padding-top:2%;text-align:center;">
 +
<h2 class="div-img-h">MODELING <span style="color:#6D013A">OVERVIEW</span></h2>
 +
    </div>
 +
</div>
 +
</div>
 +
 +
 +
<div class="row" style="text-align:center">
 +
 +
<div class="col-md-12" style="text-align:center;">
 +
<div class="hpoverview">
 +
<img src="https://static.igem.org/mediawiki/2015/5/5f/ZJU-moadeling-overview.png"  class="img-in"></img>
 +
</div>
 +
</div>
 +
 +
</div>
 +
   
 +
<div class="row-button">
 +
     
 +
<div class="div-row-in" style="width:50%">
 +
        <a class="blue button" href="https://2015.igem.org/Team:ZJU-China/Modeling/first">Look at me!</a>
 +
        </div>
 +
       
 +
 +
       
 +
        <div class="div-row-in" style="width:30%">
 +
        <a class="green button" href="https://2015.igem.org/Team:ZJU-China/Modeling/second">Click me!</a>
 +
        </div>
 +
     
 +
 +
       
 +
 +
      <div class="div-row-in" style="width:20%" >
 +
          <a class="red button" href="https://2015.igem.org/Team:ZJU-China/Modeling/third">Hi!</a>
 +
      </div>
 +
 +
 +
        </div>
 +
<br> <br> <br> <br> <br>
 +
<div class="word-under">
 +
<div class="word-under">
 +
  <img src="https://static.igem.org/mediawiki/2015/b/b0/Word-under.png" class="img-under"></img>
 +
    </div>
 +
</div>
 +
<br>
 +
</div>
  
 
</div>
 
</div>
  
 +
 +
<article>
 +
 +
<a href="https://2015.igem.org/Team:ZJU-China/Modeling/first">
 +
    <div class="row shadow">
 +
<h2>Termite Simulation</h2>
 +
        <div class="col-md-6 text-col-left">
 +
       
 +
            <p class="p2">
 +
              The last step of wet lab proves the poison effect of toxic proteins and the practicability of the device. After that, before our products come into service, one necessary step is simulating the action of termites, which can prove that toxic proteins work in reality. Also, in order to test the robustness and the effectiveness of the simulation code in an unknown environment, we load some environment images into the code and then test the performance of the code.
 +
</p>
 +
        </div>
 +
        <div class="col-md-6  ">
 +
             
 +
            <img src="https://static.igem.org/mediawiki/2015/5/52/ZJU-China_model1-61.png" class="img-center"></img>
 +
            <div class="cpleft">
 +
            <p class="kuvateksti">
 +
         
 +
            </p>
 +
            </div>
 +
        </div>
 +
    </div>
 +
</a>
 +
<a href="https://2015.igem.org/Team:ZJU-China/Design/CNC">   
 +
    <div class="row shadow">
 +
<h2>Mass transfer model</h2>
 +
        <div class="col-md-6 text-col-left">
 +
       
 +
            <p class="p2">
 +
                In our Termite Application Experiments, we have tested cellulose activity in Coptotermes formosanus alimentary tract to. When the activity increases, the etching rate of CNC coat increases. As a result, we must monitor the thickness to prevent the Toxins from leaking so much before trophallaxis takes place. Also, the leaked Toxins must work before our production is excreted.
 +
</p>
 +
        </div>
 +
        <div class="col-md-6  ">
 +
             
 +
            <img src="https://static.igem.org/mediawiki/2015/f/fc/ZJU-CHINA_static-result.jpg" class="img-center"></img>
 +
            <div class="cpleft">
 +
            <p class="kuvateksti">
 +
         
 +
            </p>
 +
            </div>
 +
        </div>
 +
    </div>
 +
</a>
 +
<a href="https://2015.igem.org/Team:ZJU-China/Design/Termites">
 +
    <div class="row shadow">
 +
<h2>Degradation model</h2>
 +
        <div class="col-md-6 text-col-left">
 +
       
 +
            <p class="p2">
 +
              Toxalbumin is produced by cell and resolved by enzyme or itself.We build model for the process based on Michaelis-Menten equation.
 +
  </p>
 +
<p class="p2"> 
 +
  Michaelis-Menten equation is the velocity equation of the relationship between the initial velocity of the enzymatic reaction and the concentration of substrate which is indicated. We suppose that the producing and degradation observe this law.
 +
      </p>
 +
  </div>
 +
        <div class="col-md-6  ">
 +
             
 +
            <img src="https://static.igem.org/mediawiki/2015/c/ca/ZJU-model3Solution.png" class="img-center"></img>
 +
            <div class="cpleft">
 +
            <p class="kuvateksti">
 +
         
 +
            </p>
 +
            </div>
 +
        </div>
 +
    </div>
 +
</a>
 +
    </div>
 +
</article>
 +
 +
 +
</body>
 
</html>
 
</html>

Latest revision as of 15:55, 17 September 2015

MODELING OVERVIEW







Termite Simulation

The last step of wet lab proves the poison effect of toxic proteins and the practicability of the device. After that, before our products come into service, one necessary step is simulating the action of termites, which can prove that toxic proteins work in reality. Also, in order to test the robustness and the effectiveness of the simulation code in an unknown environment, we load some environment images into the code and then test the performance of the code.

Mass transfer model

In our Termite Application Experiments, we have tested cellulose activity in Coptotermes formosanus alimentary tract to. When the activity increases, the etching rate of CNC coat increases. As a result, we must monitor the thickness to prevent the Toxins from leaking so much before trophallaxis takes place. Also, the leaked Toxins must work before our production is excreted.

Degradation model

Toxalbumin is produced by cell and resolved by enzyme or itself.We build model for the process based on Michaelis-Menten equation.

Michaelis-Menten equation is the velocity equation of the relationship between the initial velocity of the enzymatic reaction and the concentration of substrate which is indicated. We suppose that the producing and degradation observe this law.