Difference between revisions of "Team:UCSF/Description"
Line 53: | Line 53: | ||
$('#set3').css('display','block'); | $('#set3').css('display','block'); | ||
$('#set4').css('display','none'); | $('#set4').css('display','none'); | ||
+ | }); | ||
+ | |||
+ | $('.part4').click(function () { | ||
+ | $('#contentProject').html( | ||
+ | "<p class='headerProjectSub'>BASIC CIRCUIT</p><div class='headerBreakSub' style='width:100%'></div></br><p class='content1'><b style='color:#368E8C;font-size:1.5em'>Community Response: RFP</b></br></br><img style='float:right;margin-right:0px;margin-top:-80px' src='https://static.igem.org/mediawiki/2015/a/aa/UCSF_Basic_Circuit_Diagram_Part_3-01.png' alt='Circuit Part 3' height='210' width='350'><b>Cells produce RFP and LexADBD in response to mFα.</b></br></br><b style='color:#368E8C'>Design:</b> pAga inducible promoter drives production of RFP and LexADBD.</br><b style='color:#368E8C'>Purpose:</b> Something here about why we do this.</br><b style='color:#368E8C'>References:</b></br><span style='font-size:1em'>Insert references here</span></br></p></br>"); | ||
+ | $('#set3').css('display','none'); | ||
+ | $('#set4').css('display','block'); | ||
+ | $('#set5').css('display','none'); | ||
+ | }); | ||
+ | |||
+ | $('.part5').click(function () { | ||
+ | $('#contentProject').html( | ||
+ | "<p class='headerProjectSub'>BASIC CIRCUIT</p><div class='headerBreakSub' style='width:100%'></div></br><p class='content1'><b style='color:#368E8C;font-size:1.5em'>Feedback: Increased Activation</b></br></br><img style='float:right;margin-right:0px;margin-top:-80px' src='https://static.igem.org/mediawiki/2015/a/aa/UCSF_Basic_Circuit_Diagram_Part_3-01.png' alt='Circuit Part 3' height='210' width='350'><b>Cells produce RFP and LexADBD in response to mFα.</b></br></br><b style='color:#368E8C'>Design:</b> LexAOps inducible promoter drives production of feedback gene.</br><b style='color:#368E8C'>Purpose:</b> Something here about why we do this.</br><b style='color:#368E8C'>References:</b></br><span style='font-size:1em'>Insert references here</span></br></p></br>"); | ||
+ | $('#set4').css('display','none'); | ||
+ | $('#set5').css('display','block'); | ||
}); | }); | ||
Line 292: | Line 307: | ||
<div class='circuitNav'> | <div class='circuitNav'> | ||
+ | |||
<div id="set1" class="setHide"> | <div id="set1" class="setHide"> | ||
<img src='https://static.igem.org/mediawiki/2015/3/3d/UCSF_Arrow_Basic_Circuit_Right.png' class='circuitArrowsRight circuitArrowsRightHover part2' width='70' height='39'> | <img src='https://static.igem.org/mediawiki/2015/3/3d/UCSF_Arrow_Basic_Circuit_Right.png' class='circuitArrowsRight circuitArrowsRightHover part2' width='70' height='39'> | ||
</div> | </div> | ||
+ | |||
<div id="set2" class="setHide"> | <div id="set2" class="setHide"> | ||
<img src='https://static.igem.org/mediawiki/2015/f/f0/UCSF_Arrow_Basic_Circuit_Left.png' class='circuitArrowsLeft circuitArrowsLeftHover part1' width='70' height='39'> | <img src='https://static.igem.org/mediawiki/2015/f/f0/UCSF_Arrow_Basic_Circuit_Left.png' class='circuitArrowsLeft circuitArrowsLeftHover part1' width='70' height='39'> | ||
<img src='https://static.igem.org/mediawiki/2015/3/3d/UCSF_Arrow_Basic_Circuit_Right.png' class='circuitArrowsRight circuitArrowsRightHover part3' width='70' height='39'> | <img src='https://static.igem.org/mediawiki/2015/3/3d/UCSF_Arrow_Basic_Circuit_Right.png' class='circuitArrowsRight circuitArrowsRightHover part3' width='70' height='39'> | ||
</div> | </div> | ||
+ | |||
<div id="set3" class="setHide"> | <div id="set3" class="setHide"> | ||
<img src='https://static.igem.org/mediawiki/2015/f/f0/UCSF_Arrow_Basic_Circuit_Left.png' class='circuitArrowsLeft circuitArrowsLeftHover part2' width='70' height='39'> | <img src='https://static.igem.org/mediawiki/2015/f/f0/UCSF_Arrow_Basic_Circuit_Left.png' class='circuitArrowsLeft circuitArrowsLeftHover part2' width='70' height='39'> | ||
<img src='https://static.igem.org/mediawiki/2015/3/3d/UCSF_Arrow_Basic_Circuit_Right.png' class='circuitArrowsRight circuitArrowsRightHover part4' width='70' height='39'> | <img src='https://static.igem.org/mediawiki/2015/3/3d/UCSF_Arrow_Basic_Circuit_Right.png' class='circuitArrowsRight circuitArrowsRightHover part4' width='70' height='39'> | ||
</div> | </div> | ||
+ | |||
<div id="set4" class="setHide"> | <div id="set4" class="setHide"> | ||
<img src='https://static.igem.org/mediawiki/2015/f/f0/UCSF_Arrow_Basic_Circuit_Left.png' class='circuitArrowsLeft circuitArrowsLeftHover part3' width='70' height='39'> | <img src='https://static.igem.org/mediawiki/2015/f/f0/UCSF_Arrow_Basic_Circuit_Left.png' class='circuitArrowsLeft circuitArrowsLeftHover part3' width='70' height='39'> | ||
<img src='https://static.igem.org/mediawiki/2015/3/3d/UCSF_Arrow_Basic_Circuit_Right.png' class='circuitArrowsRight circuitArrowsRightHover part5' width='70' height='39'> | <img src='https://static.igem.org/mediawiki/2015/3/3d/UCSF_Arrow_Basic_Circuit_Right.png' class='circuitArrowsRight circuitArrowsRightHover part5' width='70' height='39'> | ||
</div> | </div> | ||
+ | |||
+ | <div id="set5" class="setHide"> | ||
+ | <img src='https://static.igem.org/mediawiki/2015/f/f0/UCSF_Arrow_Basic_Circuit_Left.png' class='circuitArrowsLeft circuitArrowsLeftHover part4' width='70' height='39'> | ||
+ | </div> | ||
+ | |||
</div> | </div> | ||
Revision as of 16:27, 17 September 2015
BACKGROUND
Cells in a population can have varied responses to a stimulus, but are able to coordinate their responses through communication motifs. Chemical signaling to neighbors in a community can allow populations to make more robust and effective decisions as a collective whole.T Cells, for instance, need to know whether or not to proliferate to attack a given antigen. If too many proliferate, an autoimmune disorder is generated. If too little proliferate, the antigen continues to attack the body. By sensing the antigen at varying levels and communicating with the population, each T Cell knows whether or not it should activate and what level to activate at, in order to carry on their function properly. But, how do these cells communicate and how do they understand their role as part of the collective? How do these genetically identical cells in the same population differentiate themselves from others? What motifs are necessary to elicit a bimodal response, in which high activating cells stay ON and low activating cells stay OFF? Our goal this year is to understand these questions and to take advantage of the natural variation found within cells of the same population in order to amplify that difference and create two divergent responses. Our genetic circuit will utilize a stimulus that activates a fluorescent readout for individual response (GFP) and the secretion of a communication signal that is sensed and secreted by all members of the community. This community signal will in turn activate a fluorescent readout for community response (RFP).
SYNTHETIC MODEL
Click on the part of our circuit you are interested in learning about in the image above.