Difference between revisions of "Team:Warwick/Project"
Line 40: | Line 40: | ||
<p> | <p> | ||
− | Our project is in the track of Foundation Advancement; which is focused on providing technologies or parts that can benefit the sphere of synthetic biology or specifically the iGEM community and future competitors. With this in mind, our project's aim to is provide a technique that allows cells to have the ability to be localised to designated areas through genetic modification. Whilst in our project we are using E.coli as our model organism, the parts we create will be open to be trialled in other organisms. Researchers in microbiology and other fields can benefit from this work with the goal of being able to bring together cells of different types into contact. We are wanting to look more in depth into specific situations where this project can play an impact and be used. We are also looking to continually mould and adapt our work so any critique or questions that this work prompts we are very willing to hear about too. | + | Our project is in the track of Foundation Advancement; which is focused on providing technologies or parts that can benefit the sphere of synthetic biology or specifically the iGEM community and future competitors. With this in mind, our project's aim to is provide a technique that allows cells to have the ability to be localised to designated areas through genetic modification. Whilst in our project we are using <i>E.coli</i> as our model organism, the parts we create will be open to be trialled in other organisms. Researchers in microbiology and other fields can benefit from this work with the goal of being able to bring together cells of different types into contact. We are wanting to look more in depth into specific situations where this project can play an impact and be used. We are also looking to continually mould and adapt our work so any critique or questions that this work prompts we are very willing to hear about too. |
</p> | </p> | ||
Line 79: | Line 79: | ||
As a starting point we are conducting tests for the expression of the fusion protein, and working on a method of placing DNA on glass slides. Then we can test the binding of DNA to the slides in simple patterns to view the system. Currently we have demonstrated we can adhere oligonucleotides to the glass slide as shown in Fig.2. Fluorescent oligonucleotides (with amine groups) were introduced to 2 glass slides prepared; one treated with GOPTS, the other only cleaned. Both slides were washed and inspected with a FITC green filter. In theory only the treated slide should show fluorescence, and the results were as expected. | As a starting point we are conducting tests for the expression of the fusion protein, and working on a method of placing DNA on glass slides. Then we can test the binding of DNA to the slides in simple patterns to view the system. Currently we have demonstrated we can adhere oligonucleotides to the glass slide as shown in Fig.2. Fluorescent oligonucleotides (with amine groups) were introduced to 2 glass slides prepared; one treated with GOPTS, the other only cleaned. Both slides were washed and inspected with a FITC green filter. In theory only the treated slide should show fluorescence, and the results were as expected. | ||
− | <br>To demonstrate that the E.coli receiving our part construct are being expressed we added a flag tag to the part inserted, allowing us to treat cells with an anti-FLAG antibody and visualise using fluorescent microscopy. Wild-type, transformed and uninduced, and transformed and induced DH5α Z1 cells were dried onto cover slips and fixed. The cells were then treated with an anti-FLAG antibody, followed by an anti-mouse fluorescent antibody. The slides were then examined with a FITC green filter shown in Fig.3. Although random flourescence is seen in A this is likely due to poor antibody removal based on the areas of flourescence. The brightest floursecnce and clear cellular outlines are seen in C in the induced DH5α Z1 cells. | + | <br>To demonstrate that the <i>E.coli</i> receiving our part construct are being expressed we added a flag tag to the part inserted, allowing us to treat cells with an anti-FLAG antibody and visualise using fluorescent microscopy. Wild-type, transformed and uninduced, and transformed and induced DH5α Z1 cells were dried onto cover slips and fixed. The cells were then treated with an anti-FLAG antibody, followed by an anti-mouse fluorescent antibody. The slides were then examined with a FITC green filter shown in Fig.3. Although random flourescence is seen in A this is likely due to poor antibody removal based on the areas of flourescence. The brightest floursecnce and clear cellular outlines are seen in C in the induced DH5α Z1 cells. |
<p"><img src="https://static.igem.org/mediawiki/2015/3/3a/Warwickoverview3.png" height="350px" width="500px" border="50px"></p> | <p"><img src="https://static.igem.org/mediawiki/2015/3/3a/Warwickoverview3.png" height="350px" width="500px" border="50px"></p> | ||
</p> | </p> |
Revision as of 16:51, 17 September 2015