Difference between revisions of "Team:SZMS 15 Shenzhen/Collaborations"

 
(3 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
<head>
 
<head>
 
     <meta charset="UTF-8">
 
     <meta charset="UTF-8">
    <meta name="viewport" content="target-densitydpi=device-dpi, width=device-width, minimum-scale=1.0, maximum-scale=1.0, user-scalable=no" />
 
 
     <link href="https://2015.igem.org/Template:SZMS_15_Shenzhen/indexsccss?action=raw&ctype=text/css" rel="stylesheet" type="text/css">
 
     <link href="https://2015.igem.org/Template:SZMS_15_Shenzhen/indexsccss?action=raw&ctype=text/css" rel="stylesheet" type="text/css">
 
     <title>Title</title>
 
     <title>Title</title>
Line 13: Line 12:
 
                 <li class="nav-li"><a href="https://2015.igem.org/Team:SZMS_15_Shenzhen/project">Project</a></li>
 
                 <li class="nav-li"><a href="https://2015.igem.org/Team:SZMS_15_Shenzhen/project">Project</a></li>
 
                 <li class="nav-li"><a href="https://2015.igem.org/Team:SZMS_15_Shenzhen/interlab">Interlab</a></li>
 
                 <li class="nav-li"><a href="https://2015.igem.org/Team:SZMS_15_Shenzhen/interlab">Interlab</a></li>
 +
<li class="nav-li"><a href="https://2015.igem.org/Team:SZMS_15_Shenzhen/Practices">Practice</a></li>
 
                 <li class="nav-li"><a href="https://2015.igem.org/Team:SZMS_15_Shenzhen/gallery">Gallery</a></li>
 
                 <li class="nav-li"><a href="https://2015.igem.org/Team:SZMS_15_Shenzhen/gallery">Gallery</a></li>
 
                 <li class="nav-li"><a href="https://2015.igem.org/Team:SZMS_15_Shenzhen/teamintro">About us</a></li>
 
                 <li class="nav-li"><a href="https://2015.igem.org/Team:SZMS_15_Shenzhen/teamintro">About us</a></li>
Line 18: Line 18:
 
         </div>
 
         </div>
 
     </div>
 
     </div>
    <div id="content">
+
  <div id="content">
 
         <div class="heading">
 
         <div class="heading">
 
             <div class="heading-text">
 
             <div class="heading-text">
 
                 <div class="heading-text-title">Collabotations</div>
 
                 <div class="heading-text-title">Collabotations</div>
                 <div class="heading-text-content">&nbsp;&nbsp;&nbsp;&nbsp;We have acknowledged that one Ab with wAg + one Ag coming into one Ab with Ag and one wAg is irreversible and the amount of this kind of changes is related to the amount of Ab with wAg(x2) , the amount of Ag (x1) and time.
+
                 <div class="heading-text-content">(We helped Shenzhen_SFLS with part of their modeling, and there're the results)<br><br>
</div>
+
                    &nbsp;&nbsp;&nbsp;&nbsp;We have acknowledged that one Ab with wAg + one Ag coming into one Ab with Ag and one wAg is irreversible and the amount of this kind of changes is related to the amount of Ab with wAg(x2) , the amount of Ag (x1) and time.<br><br>
            </div>
+
                    According to Volterra Model,we can know that ‘dx1/dt=dx2/dt=-k*x1*x2’.
            <div class="heading-text">
+
                <div class="heading-text-title"></div>
+
                <div class="heading-text-content">&nbsp;&nbsp;&nbsp;&nbsp;According to Volterra Model,we can know that ‘dx1/dt=dx2/dt=-k*x1*x2’.
+
 
<br><br>
 
<br><br>
k is a regular value which is related to affinity(f) between one Ab with wAg and one Ag which is defined as p,so we can attain an another equation:’k=pf’.
+
k is a regular value which is related to affinity(f) between one Ab with wAg and one Ag which is defined as p,so we can attain an another equation:’k=pf’.<br><br>According to the first equation above,we can know that ‘x2=x1+m’.<br><br>
</div>
+
            </div>
+
           
+
        </div>
+
       
+
        <div class="content2">
+
            <div class="content2-text">
+
                <div class="content2-text-title"></div>
+
                <div class="content2-text-content">According to the first equation above,we can know that ‘x2=x1+m’.<br><br>
+
  
 
We assume that the inchoate value of x1 is x0.
 
We assume that the inchoate value of x1 is x0.
 
 
</div>
 
</div>
 
             </div>
 
             </div>
             <div class="content2-text">
+
             <div class="heading-text">
                 <div class="content2-text-title"></div>
+
                 <div class="heading-text-title"></div>
                 <div class="content2-text-content">‘dx1/dt=dx2/dt=-k*x1*x2’<br><br>
+
                 <div class="heading-text-content">‘dx1/dt=dx2/dt=-k*x1*x2’<br><br>
  
 
’k=pf’<br><br>
 
’k=pf’<br><br>
Line 67: Line 54:
  
 
‘E=(x0-x1)/x1’ which is simplified as ‘E=1- m/((exp(m*(log((m + x0)/x0)/m + f*p*t)) - 1)*x0)’
 
‘E=(x0-x1)/x1’ which is simplified as ‘E=1- m/((exp(m*(log((m + x0)/x0)/m + f*p*t)) - 1)*x0)’
 
 
</div>
 
</div>
 +
            </div>
 +
           
 +
        </div>
 +
       
 +
       
 
             </div>
 
             </div>
 
              
 
              
Line 74: Line 65:
 
         <font class="buttom-intro" color="#555555">Collaborations Team:SZMS_15_Shenzhen</font>
 
         <font class="buttom-intro" color="#555555">Collaborations Team:SZMS_15_Shenzhen</font>
 
     </div>
 
     </div>
 +
   
 
</body>
 
</body>
  
 
</html>
 
</html>

Latest revision as of 09:36, 18 September 2015

Title

Collabotations
(We helped Shenzhen_SFLS with part of their modeling, and there're the results)

    We have acknowledged that one Ab with wAg + one Ag coming into one Ab with Ag and one wAg is irreversible and the amount of this kind of changes is related to the amount of Ab with wAg(x2) , the amount of Ag (x1) and time.

According to Volterra Model,we can know that ‘dx1/dt=dx2/dt=-k*x1*x2’.

k is a regular value which is related to affinity(f) between one Ab with wAg and one Ag which is defined as p,so we can attain an another equation:’k=pf’.

According to the first equation above,we can know that ‘x2=x1+m’.

We assume that the inchoate value of x1 is x0.
‘dx1/dt=dx2/dt=-k*x1*x2’

’k=pf’

‘x2=x1+m’

‘x1(0)=x0’

And the program code of matlab is:

dsolve('Dx1=-p*f*x1*(x1+m)','x1(0)=x0','t')

ans =

m/(exp(m*(log((m + x0)/x0)/m + f*p*t)) - 1)

x1= m/(exp(m*(log((m + x0)/x0)/m + f*p*t)) - 1)

We can define the extend of combination as E.

‘E=(x0-x1)/x1’ which is simplified as ‘E=1- m/((exp(m*(log((m + x0)/x0)/m + f*p*t)) - 1)*x0)’
Collaborations Team:SZMS_15_Shenzhen