Difference between revisions of "Team:Warwick/Modeling"

(Undo revision 339281 by EgheosaOgbomo (talk))
 
(14 intermediate revisions by 2 users not shown)
Line 12: Line 12:
 
<div class="hr">
 
<div class="hr">
 
</div>
 
</div>
 
+
</div>
 
<!-- CONTENT  
 
<!-- CONTENT  
 
================================================== -->
 
================================================== -->
Line 18: Line 18:
 
<div class="row">
 
<div class="row">
 
     <!-- MAIN CONTENT-->
 
     <!-- MAIN CONTENT-->
<div class="sectiontitle"></div>
+
<div class="sectiontitle">
 
<h4>Modelling</h4>
 
<h4>Modelling</h4>
 
</div>
 
</div>
Line 41: Line 41:
  
 
<p><a href="BindingAffinity"><h5>Binding Affinity Modelling</h5><p style="float: left;"><img src="https://static.igem.org/mediawiki/2015/6/66/Warwickmodeling5.png" align="right" height="100px" width="100px" border="1px"></p></p> </a>  
 
<p><a href="BindingAffinity"><h5>Binding Affinity Modelling</h5><p style="float: left;"><img src="https://static.igem.org/mediawiki/2015/6/66/Warwickmodeling5.png" align="right" height="100px" width="100px" border="1px"></p></p> </a>  
A big problem biologists encounter is the uncertainty of bonding especially in our design where zinc fingers bind to their sites. Therefore it is important to come up with a model which can calculate the number of cell and zinc finger binding sites required for a given output. This page discusses this and shows a program designed to dictate concentrations for the biologists to use.
+
A big problem biologists encounter is the uncertainty of binding especially in our design where zinc fingers bind to their sites. Therefore it is important to come up with a model which can calculate the number of cell and zinc finger binding sites required for a given output. This page discusses this and shows a program designed to dictate concentrations for the biologists to use.
  
  
Line 58: Line 58:
 
<p><a href="Modelling4"><h5>DNA Beading Model</h5><p style="float: left;"><img src="https://static.igem.org/mediawiki/2015/a/a0/WarwickBead_Drawing.png" align="right" height="100px" width="100px" border="1px"></p></p> </a>
 
<p><a href="Modelling4"><h5>DNA Beading Model</h5><p style="float: left;"><img src="https://static.igem.org/mediawiki/2015/a/a0/WarwickBead_Drawing.png" align="right" height="100px" width="100px" border="1px"></p></p> </a>
  
Once we  had a method of calculating the concentration of cells needed we had to model the number of cells required to make a certain shape. We also needed to invent a novel approach to creating 2D shapes using cells, this page discusses bonding them to a longer string of DNA to form a pattern.
+
Once we  had a method of calculating the concentration of cells needed we had to model the number of cells required to make a certain shape. We also needed to invent a novel approach to creating 2D shapes using cells, this page discusses binding them to a longer string of DNA to form a pattern.
  
 
<p><img src="https://static.igem.org/mediawiki/2015/2/29/Warwickbubbles2.png" height="120px" width="800px" border="1px"></p>
 
<p><img src="https://static.igem.org/mediawiki/2015/2/29/Warwickbubbles2.png" height="120px" width="800px" border="1px"></p>
Line 91: Line 91:
 
<p><a href="modelling3"><h5>Tetrahedron Construction</h5><p style="float: left;"><img src="https://static.igem.org/mediawiki/2015/0/05/WarwickCaddy.png" align="right" height="100px" width="100px" border="1px"></p></p> </a>  
 
<p><a href="modelling3"><h5>Tetrahedron Construction</h5><p style="float: left;"><img src="https://static.igem.org/mediawiki/2015/0/05/WarwickCaddy.png" align="right" height="100px" width="100px" border="1px"></p></p> </a>  
  
The previous model of using DNA as a glue could create 3D shapes but would need vast amounts of unique zinc fingers. This wasn't possible with our time frame so we cam up with a model which could create a 3D structure from the minimum amount of unique DNA using tetrahedrons as a base to build from. Cells would then be bound to the outside.<br>
+
The previous model of using DNA as a glue could create 3D shapes but would need vast amounts of unique zinc fingers. This wasn't possible with our time frame so we came up with a model which could create a 3D structure from the minimum amount of unique DNA using tetrahedrons as a base to build from. Cells would then be bound to the outside.<br>
  
<p><img src="https://static.igem.org/mediawiki/2015/e/e7/Warwickbubbles6.png" height="120px" width="800px" border="1px"></p>
+
<p><img src="https://static.igem.org/mediawiki/2015/b/be/Warwickbubbles5.png" height="120px" width="800px" border="1px"></p>
 
<p>_______________________________________________________________________________________________________________________________________<p>
 
<p>_______________________________________________________________________________________________________________________________________<p>
  
Line 124: Line 124:
  
  
 +
<p><a href="Modelling1"><h5>NTNU Collaboration</h5><p style="float: left;"><img src="https://static.igem.org/mediawiki/2015/1/13/Warwickntunuloo.png" align="right" height="100px" width="100px" border="1px"></p></p>
 +
</a>
 +
We dcided to get help for some of the modelling and NTNU were kind enough to oblige. This model deals with calculating bonding and binding affinities.<br><br>
  
 +
<p><img src="https://static.igem.org/mediawiki/2015/4/4f/Warwickbubbles9.png" height="120px" width="800px" border="1px"></p>
  
  

Latest revision as of 10:10, 18 September 2015

Warwick iGEM 2015