Difference between revisions of "Team:Valencia UPV/Notebook"

 
(37 intermediate revisions by 3 users not shown)
Line 6: Line 6:
  
 
<style>  
 
<style>  
#banner{background-image: url("images/overlay.png"), url("#");}
+
#banner{background-image: url("images/overlay.png"), url("https://static.igem.org/mediawiki/2015/8/89/Valencia_upv_notebook.JPG");}
 
</style>
 
</style>
  
 
<section id="banner">
 
<section id="banner">
<h2><b>Notebook</b></h2>
+
<h2>Notebook</h2>
<p>Be patient, we are under construction</p>
+
 
 
<ul class="actions">
 
<ul class="actions">
<li><a href="#scroll1" class="button">1</a></li>
+
<li><a href="https://2015.igem.org/Team:Valencia_UPV/Notebook#scroll1" class="button">Protocols</a></li>
<li><a href="#scroll2" class="button">2</a></li>
+
<li><a href="https://2015.igem.org/Team:Valencia_UPV/Notebook/Content#scroll1" class="button">Daily notebook</a></li>
<li><a href="#scroll3" class="button">3</a></li>
+
 
 
</ul>
 
</ul>
 
</section>
 
</section>
 
  
 
<!-- Main -->
 
<!-- Main -->
  
 
<section id="main" class="container">
 
<section id="main" class="container">
<div id="scroll1" class="row" style="font-size:initial">
+
<div class="row" style="font-size:initial">
 
<div class="12u">
 
<div class="12u">
 
<section class="box">
 
<section class="box">
 
<header class="major">
 
<header class="major">
<h2>Notebook<br />
+
<h2>Protocols<br />
 
</h2><hr>
 
</h2><hr>
 
</header>
 
</header>
<!--Beginning of notebook-->
 
  
<h3 style="color:green">27 May 2015</h3>
+
<p id="scroll1">Here we present you all the procedures we did to develop our project. On this page you can find the general protocols. If preferred, you can go directly to the dialy Notebook, the experiments on <i>Nicotiana</i> or the protoplasts experiments by pressing in the buttons above or below (after protocols). We hope you enjoy reading our incredible journey!</p>
 +
<br/>
 +
<div>
 +
<details id="scrollsect1">
 +
    <summary class="button fit">Constructions protocol</summary>
 +
    <div class="clsPadding">
 +
<p><div style="text-align: center;"><img width=600em src="https://static.igem.org/mediawiki/2015/c/c2/Valencia_upv_protocolo_3.png" ></div> </p>
 +
  
 +
<p><b>2. Ligation in pUPD2:</b></p>
  
  
<p>Starts our work in the lab! </p>
 
  
<p>Marta, a lab mate gives us a construction, the red toggle swich (E:PIF6:PhyB:VP16:Etr8:luc), we just have to add the  
+
<p>The ligations have a total volume of 10 µl. All the parts were mixed together in an eppendorf of 0.2ml. The eppendorf was put in the thermocycler with the programs GB or GG, the differences between them are number of cycles. Explain the cycles!</p>
  
renilla; &alpha;2 (GB160) to test it.</p>
+
<p>*The cells with the asterisk are the ones that are going to be written down and specified in the lab-book. The others cells are constant unless we indicate it specifically on the lab-book.</p>
 
+
<p>Make the ligation (step 2 in the protocol):</p>
+
 
+
<div class="table-wrapper"><table class="alt">
+
 
+
<tr><td>E:PIF6:PhyB:VP16:Etr8:luc+ren; &Omega;1</td></tr>
+
 
+
<tr><td>1µL E:PIF6:PhyB:VP16:Etr8:luc; &alpha;1</td></tr>
+
 
+
<tr><td>1µL renilla; apha2</td></tr>
+
 
+
<tr><td>1µL &Omega;1</td></tr>
+
 
+
<tr><td>6,8µL H<sub>2</sub>O</td></tr>
+
 
+
</div></table>
+
 
+
 
+
 
+
 
+
 
+
</br><h3 style="color:green">28 May 2015</h3>
+
 
+
 
+
 
+
<p>Electroporation (step 3 in the protocol) of <i>E. coli</i> to insert our first construction.</p>
+
 
+
<p>Make a petri dish culture with a LB-Agar plate with streptomycin.</p>
+
 
+
 
+
 
+
</br><h3 style="color:green">29 May 2015</h3>
+
 
+
 
+
 
+
<p>There is no white colonies, we electroporate again and make petri dish culture.</p>
+
 
+
 
+
 
+
</br><h3 style="color:green">30 May 2015</h3>
+
 
+
 
+
 
+
<p>There was just one white colony, make the ligation again.</p>
+
  
  
Line 90: Line 51:
 
<div class="table-wrapper"><table class="alt">
 
<div class="table-wrapper"><table class="alt">
  
<tr><td>E:PIF6:PhyB:VP16:Etr8:luc+ren; &Omega;1</td></tr>
+
<tr><td>DNA; pUPD2</td></tr>
  
<tr><td>0.5µL E:PIF6:PhyB:VP16:Etr8:luc; &alpha;1</td></tr>
+
<tr><td>1 µl DNA fragment</td></tr>
  
<tr><td>1µL renilla; apha2</td></tr>
+
<tr><td>1 µl pUPD2</td></tr>
  
<tr><td>1µL &Omega;1</td></tr>
+
<tr><td>1.2 µl buffer ligase</td></tr>
  
<tr><td>7.2µL H<sub>2</sub>O</td></tr>
+
<tr><td>1.2 µl BSA (10x)</td></tr>
  
</div></table>
+
<tr><td>1 µl BsmbI</td></tr>
  
 +
<tr><td>1 µl T4 ligase</td></tr>
  
 
+
<tr><td>5,6 µl H<sub>2</sub>O</td></tr>
</br><h3 style="color:green">1 June 2015</h3>
+
 
+
<p>Electroporation of the new ligation.</p>
+
 
+
 
+
 
+
</br><h3 style="color:green">2 June 2015</h3>
+
 
+
 
+
 
+
<p>There are white colonies. Make 2 liquid cultures of them (Step 4 in the protocol). Add 3.5ml of LB and 3.5µL of
+
 
+
spectomycin.</p>
+
 
+
 
+
 
+
<p>Make liquid culture of just some glycerinates:</p>
+
 
+
<ul><li>&alpha;1</li>
+
 
+
<li>&alpha;2</li>
+
 
+
<li>&Omega;1</li>
+
 
+
<li>&Omega;2</li>
+
 
+
<li>pUPD2</li>
+
 
+
<li>E:PIF6:NLS; pUPD2 (GB0288)</li>
+
 
+
<li>E:PIF6:NLS; &alpha;1 (GB892)</li>
+
 
+
<li>E:PIF6:NLS; &Omega;2 (GB893)</li>
+
 
+
<li>E:PIF6:NLS:luc:PhyB; &alpha;1 (GB896)</li>
+
 
+
<li>Luc:PhyB; &Omega;1 (GB890)</li>
+
 
+
<li>PhyB:VP16; pUPD2 (GB289)</li>
+
 
+
<li>PhyB:VP16; &alpha;2 (GB88E)</li>
+
 
+
<li>Etr8:CMVmini; pUPD2 (GB1097)</li>
+
 
+
<li>OpLexA:mini35S; pUPD2 (GB733)</li>
+
 
+
<li>OpLexA:mini35S:luc:Tnos; &alpha;2</li>
+
 
+
<li>LexABD; pUPD2 (GB0732)</li>
+
 
+
<li>LacI for N-Tfusion; pUPD2 (GB858)</li>
+
 
+
<li>Linker:LacIBD; pUPD2 (GB704)</li>
+
 
+
<li>OpLacI:mini35S:luc:Tnos; &alpha;2 (GB152)</li>
+
 
+
<li>OpLacI:mini35S; pPUD2 (GB534)</li>
+
 
+
</ul></ul>
+
 
+
 
+
 
+
</br><h3 style="color:green">3 June 2015</h3>
+
 
+
 
+
 
+
<p>Al cultures have grown except for &Omega;2. Make minipreps (Step 5 in the protocol).</p>
+
 
+
 
+
 
+
<p>Digestion of the minipreps (Step 6 of the protocol).</p>
+
 
+
 
+
 
+
<div class="table-wrapper"><table class="alt">
+
 
+
<tr><td>&alpha;1</td><td>-</td><td>-</td></tr>
+
 
+
<tr><td>&alpha;2</td><td>-</td><td>-</td></tr>
+
 
+
<tr><td>&Omega;1</td><td>-</td><td>-</td></tr>
+
 
+
<tr><td>pUPD2</td><td>-</td><td>-</td></tr>
+
 
+
<tr><td>E:PIF6:NLS; pUPD2 (GB0288)</td><td>EcoRI</td><td>3000, 1000</td></tr>
+
 
+
<tr><td>E:PIF6:NLS; &alpha;1 (GB892)</td><td> EcoRI</td><td>6300, 2500</td></tr>
+
 
+
<tr><td>E:PIF6:NLS; &Omega;2 (GB893)</td><td>EcoRV</td><td>1800, 6600, 900</td></tr>
+
 
+
<tr><td>E:PIF6:NLS:luc:PhyB; &alpha;1 (GB896)</td><td>EcoRI</td><td>3600, 6300, 5600</td></tr>
+
 
+
<tr><td>Luc:PhyB; &Omega;1 (GB890)</td><td>BamHI</td><td>2300, 6300, 4200</td></tr>
+
 
+
<tr><td>PhyB:VP16; pUPD2 (GB289)</td><td>EcoRI</td><td>3000, 2000, 500</td></tr>
+
 
+
<tr><td>PhyB:VP16; &alpha;2 (GB88E)</td><td>HindIII</td><td>2100, 6300, 1800</td></tr>
+
 
+
<tr><td>Etr8:CMVmini; pUPD2 (GB1097)</td><td>EcoRI</td><td>3000, 480</td></tr>
+
 
+
<tr><td>OpLexA:mini35S; pUPD2 (GB733)</td><td>EcoRI</td><td>3000, 460</td></tr>
+
 
+
<tr><td>OpLexA:mini35S:luc:Tnos; &alpha;2 (GB151)</td><td>HindIII</td><td>2500</td></tr>
+
 
+
<tr><td>LexABD; pUPD2 (GB0732)</td><td>EcoRI</td><td>3000, 300</td></tr>
+
 
+
<tr><td>LacI for N-Tfusion; pUPD2 (GB858)</td><td>EcoRI</td><td>3000, 1000</td></tr>
+
 
+
<tr><td>Linker:LacIBD; pUPD2 (GB704)</td><td>EcoRI</td><td>3000, 1000</td></tr>
+
 
+
<tr><td>OpLacI:mini35S:luc:Tnos; &alpha;2 (GB152)</td><td>HindIII</td><td>2500, 2600</td></tr>
+
 
+
<tr><td>OpLacI:mini35S; pPUD2 (GB534)</td><td>EcoRI</td><td>3000, 560</td></tr>
+
 
+
<tr><td>E:PIF6:PhyB:VP16:Etr8:luc+ren; &Omega;1</td><td>BamHI</td><td>3700, 6100, 6600, 4200</td></tr>
+
 
+
<tr><td>E:PIF6:PhyB:VP16:Etr8:luc+ren; &Omega;1</td><td>EcoRV</td><td>11000, 400, 2500, 3000, 4000</td></tr>
+
  
 
</div></table>
 
</div></table>
Line 226: Line 71:
  
  
 
+
<p><b>8. Ligation in &alpha; or &Omega;:</b></p>
 
+
<p>Make the gel:</p>
+
  
  
Line 234: Line 77:
 
<div class="table-wrapper"><table class="alt">
 
<div class="table-wrapper"><table class="alt">
  
<tr><td>pUPD2</td><td>Alf</td><td>Alpha1</td><td>288</td><td>289</td><td>534</td></tr>
+
<tr><td>DNA1;pUPD2+DNA2;pUPD2 ; &alpha;</td><td>DNA1; &alpha;1+DNA2; &alpha;2; &Omega;</td></tr>
  
<tr><td>ok</td><td>ok</td><td>ok</td><td>ok</td><td>ok</td><td>?</td></tr>
+
<tr><td>1 µl DNA1; pUPD2</td><td>1 µl DNA1; &alpha;1</td></tr>
  
<tr><td>704</td><td>732</td><td>733</td><td>858</td><td>892</td><td>896</td></tr>
+
<tr><td>1 µl DNA2; pUPD2</td><td>1 µl DNA2; &alpha;2</td></tr>
  
<tr><td>ok</td><td>ok</td><td>ok</td><td>ok</td><td>ok</td><td>ok</td></tr>
+
<tr><td>1 µl &alpha;</td><td>1 µl &Omega;</td></tr>
  
<tr><td>1097</td><td>Alpha2</td><td>88E</td><td>151</td><td>152</td><td>Omega1</td></tr>
+
<tr><td>1.2 µl buffer ligase</td><td>1.2 µl buffer ligase</td></tr>
  
<tr><td>ok</td><td>ok</td><td>ok</td><td>ok</td><td>ok</td><td>ok</td></tr>
+
<tr><td>1.2 µl BSA</td><td>1.2 µl BSA</td></tr>
  
<tr><td>890</td><td>893</td><td>Red toggle (C1) (EcoRV)</td><td>Red toggle (C1) (BamHI)</td><td>Red toggle (C2)
+
<tr><td>1 µl T4 ligase</td><td>1 µl T4 ligase</td></tr>
  
(EcoRV)</td><td>Red toggle (C2) (BamHI)</td></tr>
+
<tr><td>1 µl BsaI</td><td>1 µl BsmbI</td></tr>
  
<tr><td>ok</td><td>ok</td><td>ok</td><td>no</td><td>no</td><td>no</td></tr>
+
<tr><td>4.6 µl H<sub>2</sub>O</td><td>4.6 µl H<sub>2</sub>O</td></tr>
  
 
</div></table>
 
</div></table>
Line 256: Line 99:
  
  
 +
<p><b>3a. Transformation:</b></p>
  
 +
<p>In order to transform the DNA construction the electroporation method was used. </p>
  
</br><h3 style="color:green">4 June 2015</h3>
+
<p>The method followed is common for E. coli and <i>Agrobacterium</i>. The electroporation cuvette was put in ice 10 minutes before inserting the cells.</p>
  
 +
<p>Frozen cells were taken out of the -80ºC freezer, and they were put immediately into ice. </p>
  
 +
<p>1-2 µl of the ligation were taken and added carefully to the electrocompetent cells.</p>
  
<p>Ask for the NDronpa sequence. This will be part of our blue toggle. </p>
+
<p>60 µl of the mix were taken and put into an electroporation cuvette making sure that there were no bubbles. </p>
  
<p>This piece is known by reading the paper ‘Reversible photoswichable Dronpa-1 monitors nucleocytoplasmic transport of an
+
<p>The cuvette was dried and put in the electroporator, making sure that it did not do a spark. In that case, the process did not work and must be repeated.</p>
  
RNA-binding protein in transgenic plants?(Doi: 10.111/j.1600-0854.2011.01180.lambda.).</p>
+
<p>The voltage is 1500V for E. coli and 1440V for <i>Agrobacterium</i>.</p>
  
<p>The sequence of NDronpa is plant optimised and avoid cryptic sequences. We have domesticated this sequence with a
+
<p>Then with 300 µl of medium the electroporated cells were taken and put into an Eppendorf, letting them grow in the shaker.</p>
  
linker in N-terminal to allow us to join it to a binding domain and also we had a NLS in the C-terminal to transport
+
<p>SOC medium was used for E.Coli and they were put at 37ºC for 1h.</p>
  
itself to the nucleus. It is domesticated as B5 part for Golden Braid assembling. </p>
+
<p>LB medium was used for <i>Agrobacterium</i> and they were grown for 2h at 27ºC.</p>
  
<p>After obtaining the sequence we compare the protein in Uniprot and we can observed that our sequence add a V in the
 
  
position 2. We compare this results with other papers and none of them has this addition. When we compare this sequence
 
  
with the paper ?Optical control protein activity by fluorescent protein domains?(Doi: 10.1126/science.1226854)  we
+
<p><b>3b. Petri dish culture:</b></p>
  
observed that our position 146 is the position 145 and as what we want is the interaction caused by the N145-K145, we
+
<p>Depending on the plasmid with which the bacteria was transfected, agar dishes with the specific antibiotic were needed to make the petri dishes cultures.  </p>
  
eliminate the V. We also eliminate a pair of amino acids at the end of the sequence following the same criteria. </p>
+
<ul><li><i>E. coli</i>-pUPD2 plasmids: chloramphenicol.</li>
  
<p>Once obtained both variants of Dronpa, we decided to add the binding domain to KDronpa and the activation to NDronpa as
+
<li><i>E. coli</i>-Alpha 1 and 2: kanamycin.</li>
  
this last one tetramerizes and all operator sequence are repeated in our promoters.</p>
+
<li><i>E. coli</i>-Omega 1 and 2: streptomycin</li>
  
 
+
<li><i>Agrobacterium</i>: rifampicin + the specific one for each construction.</li>
 
+
 
+
 
+
</br><h3 style="color:green">5 June 2015</h3>
+
 
+
 
+
 
+
<p>We had 2 cultures from the last day, corresponding to other 2 colonies of ligation. </p>
+
 
+
<p><i>Agrobacterium</i> culture of promoter less: Luciferase + Renilla </p>
+
 
+
 
+
 
+
<p>Minipreps</p>
+
 
+
<p>Digestion with BamHI and EcoRV</p>
+
 
+
<p>Agarose gel 1%</p>
+
 
+
<img src=https://static.igem.org/mediawiki/2015/1/1c/Valencia_upv_gel_150605.png>
+
 
+
 
+
 
+
<p>How to ask and make primers?</p>
+
 
+
<ul><li>Select the sequence to amplify and save in FASTA format.</li>
+
 
+
<li>gbCloning, go to Tools-Domesticator-1?Category</li>
+
 
+
<li>Add FASTA and select parts.</li>
+
 
+
<li>On the protocol we have the primers </li>
+
 
+
<li>The oligos they give us:</li>
+
 
+
<ul class="ul_2"><li>4 first nucleotides: so the enzyme can recognize without problems</li>
+
 
+
<li>6 following bingind sites.</li>
+
 
+
<li>1 extra nucleotide.</li>
+
 
+
<li>4 overhangs. </li>
+
 
+
</ul></ul>
+
 
+
<p>Meeting with Daniel Ramón (Biopolis). </p>
+
 
+
<p>Ligations:</p>
+
 
+
 
+
 
+
<div class="table-wrapper"><table class="alt">
+
 
+
<tr><td>PIF6 + PhyB; &Omega;1</td><td>Etr8(CMV)+BxbI:T35S; &alpha;1</td></tr>
+
 
+
<tr><td>1µL (GB892) PIF; &alpha;1</td><td>1µL (GB1097) Etr8(CMV); pUPD2</td></tr>
+
 
+
<tr><td>1µL (GB88E) PhyB; &alpha;2</td><td>1µL BxbI; pUPD2</td></tr>
+
 
+
<tr><td>1µL &Omega;1 </td><td>1µL Tnos pUPD2</td></tr>
+
 
+
<tr><td>6.8µL H<sub>2</sub>O</td><td>1µL &alpha;1</td></tr>
+
 
+
<tr><td></td><td>5.8µL H<sub>2</sub>O</td></tr>
+
 
+
</div></table>
+
 
+
 
+
 
+
<p>Digestions:</p>
+
 
+
<div class="table-wrapper"><table class="alt">
+
 
+
<tr><td>(GB160) 35S:Renilla:tNOS-35S:P19:tNOS</td><td>EcoRV</td><td>2475, 381, 4601</td></tr>
+
 
+
<tr><td>(GB896) Luc:PIF6:PhyB</td><td>EcoRV</td><td>11608, 3942</td></tr>
+
 
+
</div></table>
+
 
+
 
+
 
+
</br><h3 style="color:green">6 June 2015</h3>
+
 
+
 
+
 
+
<p>Transform to <i>E. coli</i> from PIF+Phy and BxbI and make petri dish cultures.</p>
+
 
+
<p>Digest of 160, 289 and the two ligations, PIF+phy and Etr8+BxbI. </p>
+
 
+
<p>Agarose gel. </p>
+
 
+
 
+
 
+
<div class="table-wrapper"><table class="alt">
+
 
+
<tr><td>GB160</td><td>289</td><td>PIF+PhyB</td><td>BxbI </td></tr>
+
 
+
<tr><td>ok</td><td>no</td><td>?</td><td>?</td></tr>
+
 
+
</div></table>
+
 
+
 
+
 
+
<img src=https://static.igem.org/mediawiki/2015/4/46/Valencia_upv_gel_150606.png>
+
 
+
 
+
 
+
</br><h3 style="color:green">7 June 2015</h3>
+
 
+
 
+
 
+
<p>We’ve got white colonies from PIF+Phy and BxbI!</p>
+
 
+
<p>Pick two colonies from each construction.</p>
+
 
+
 
+
 
+
 
+
 
+
</br><h3 style="color:green">8 June 2015</h3>
+
 
+
 
+
 
+
<p>Minipreps of the 4 liquid cultures and digestion to see the band patterns.</p>
+
 
+
<p>Digestion:</p>
+
 
+
 
+
 
+
<div class="table-wrapper"><table class="alt">
+
 
+
<tr><td>Etr8(CMV):Bxb1:Tnos; &alpha;1</td><td>EcoRI</td><td>6345, 238</td></tr>
+
 
+
<tr><td>EPIF6 + PhyB-PV16; &Omega;1</td><td>BamHI</td><td>6686, 1439, 2685, 2237</td></tr>
+
 
+
</div></table>
+
 
+
 
+
 
+
 
+
 
+
<p>Agarose gel was made:</p>
+
 
+
 
+
 
+
<div class="table-wrapper"><table class="alt">
+
 
+
<tr><td>BxbI (C1)</td><td>BxbI (C2)</td><td>E:PIF6+PhyB-VP16 (C1)</td><td>E:PIF6+PhyB-PV16 (C2)</td><td></td></tr>
+
 
+
<tr><td>ok</td><td>ok</td><td>no</td><td>no</td></tr>
+
 
+
</div></table>
+
 
+
 
+
 
+
<img src=https://static.igem.org/mediawiki/2015/5/58/Valencia_upv_gel_150608.png>
+
 
+
 
+
 
+
<p>Repeat digestion because we are not sure of the last digestions.</p>
+
 
+
<p>We don’t have sure the toggle, so we decide to repeat the digestion with other enzyme tomorrow, noticing that the
+
 
+
colony 2 has better bands pattern.</p>
+
 
+
 
+
 
+
<p>Optimized ligation:</p>
+
 
+
 
+
 
+
<div class="table-wrapper"><table class="alt">
+
 
+
<tr><td>PIF-PhyB-Luc-Renilla-P19</td></tr>
+
 
+
<tr><td>1 µL vector</td></tr>
+
 
+
<tr><td>0.8 µL dilution ?GB160</td></tr>
+
 
+
<tr><td>1.7 µL PIF:PhyB</td></tr>
+
 
+
<tr><td>4.15 µL H<sub>2</sub>O</td></tr>
+
 
+
<tr><td>Ratio 1:2 vector insert</td></tr>
+
 
+
</div></table>
+
 
+
 
+
 
+
<p>As BxbI was good at the digestion we put 1 µL of LB and 1 µL of Kanamicyne on the tube where it had grown and store at
+
 
+
37ºC to glycerinate later.</p>
+
 
+
 
+
 
+
<p>We design primers to binding domain (BD) and PIF.</p>
+
 
+
<ul><li>Problem: domesticator is introduced in an old pUPD2. The new one has different bases. </li>
+
 
+
<li>Change manually the pUPD2 bases in the program (Benchling).</li>
+
 
+
</ul></ul>
+
 
+
</br><h3 style="color:green">9 June 2015</h3>
+
 
+
 
+
 
+
<p>Digestion of the ligation of yesterday containing: EPIF6-PhyB-VP16 (C1 y C2)</p>
+
 
+
 
+
 
+
<div class="table-wrapper"><table class="alt">
+
 
+
<tr><td>EPIF6-PhyB-VP16</td><td>PvuII (green buffer)</td><td>3663, 9472pb</td></tr>
+
 
+
</div></table>
+
 
+
 
+
 
+
 
+
 
+
<p>Agarose gel 1%:</p>
+
 
+
 
+
 
+
<div class="table-wrapper"><table class="alt">
+
 
+
<tr><td>EPIF6-PhyB-VP16 (C1)</td><td>EPIF6-PhyB-VP16 (C2)</td></tr>
+
 
+
<tr><td>no</td><td>no</td></tr>
+
 
+
</div></table>
+
 
+
 
+
 
+
<img src=https://static.igem.org/mediawiki/2015/a/a0/Valencia_upv_gel_150609.png>
+
 
+
<p>We see three bands: 7000, 4000, 1900pb</p>
+
 
+
 
+
 
+
<p>Transform optimized ligation PIF-Phy-Luc-Renilla-P19 and make petri dish cultures.</p>
+
 
+
 
+
 
+
 
+
 
+
</br><h3 style="color:green">10 June 2015</h3>
+
 
+
<ul><li>Check the primers and order LexA, Gal4, PIF6, LacI, Dronpa.</li>
+
 
+
<li>Check linker VP16 (88E) and make a primer for it.</li>
+
 
+
<li>Take out glycerinate of &Omega;2.</li>
+
  
 
</ul>
 
</ul>
  
<p>Alfredo’s part is not working.</p>
+
<p>The procedure was made in the laminar flux cabinet. The spread plate method is done with 50-40 µl of the bacteria culture that is in the eppendorf. It was spread with the glass dipstick. After that the plates were put for 16h approximately in 37ºC for E. coli and 32h at 28ºC for <i>Agrobacterium</i>. </p>
  
<ul><li>Make liquid culture of E:PIF6:PhyB:VP16:luc:ren (C1-C3).</li>
 
  
</ul>
 
  
<ul><li>Minipreps of liquid culture (PIF + Phy), colonies C3, C4, C5, C6</li>
+
<p><b>4. Liquid culture:</b></p>
  
<li>Digestion:</li>
+
<ul><li>For <i>Escherichia coli</i>:</li>
 
+
</ul></ul>
+
 
+
<div class="table-wrapper"><table class="alt">
+
 
+
<tr><td>PIF+Phy:VP16</td><td>PvuII (buffer green 10x)</td><td>3663, 9472</td></tr>
+
 
+
<tr><td>PIF+Phy:VP16</td><td>BamHI</td><td>1939, 2685, 2337, 6674</td></tr>
+
 
+
</div></table>
+
 
+
 
+
 
+
<ul><li>Agarose gel 1%:</li>
+
  
 
</ul>
 
</ul>
  
<img src=https://static.igem.org/mediawiki/2015/e/ea/Valencia_upv_gel_150610.png>
+
<p>The mix was grown 16h at 37ºC in the shaker.</p>
  
 
+
<ul><li>For <i><i>Agrobacterium</i> tumefaciens</i>:</li>
 
+
<div class="table-wrapper"><table class="alt">
+
 
+
<tr><td>PIF + Phy (PvuII) C3</td><td>PIF + Phy (PvuII) C4</td><td>PIF + Phy (PvuII) C5</td><td>PIF + Phy (PvuII)
+
 
+
C6</td></tr>
+
 
+
<tr><td>no</td><td>ok</td><td>no</td><td>No</td></tr>
+
 
+
<tr><td>PIF + Phy (BamHI) C3</td><td>PIF + Phy (BamHI) C4</td><td>PIF + Phy (BamHI) C5</td><td>PIF + Phy (BamHI)
+
 
+
C6</td></tr>
+
 
+
<tr><td>no</td><td>ok</td><td>no</td><td>No</td></tr>
+
 
+
</div></table>
+
 
+
 
+
 
+
<ul><li>Transformation into <i>Agrobacterium</i>EPIF6-PhyB-VP16 + luciferase (GB896) and make petri dish culture. We are
+
 
+
not going to have the positive control (renilla+P19) and we won’t be able to quantify and make ratios.</li>
+
  
 
</ul>
 
</ul>
  
</br><h3 style="color:green">11 June 2015</h3>
+
<p>The mix was grown 32h at 28ºC in the shaker.</p>
  
<ul><li>Minipreps of the culture:</li>
 
  
</ul>
 
  
<ul><li>Digestion:</li>
+
<p><b>5. Minipreps:</b></p>
  
</ul>
 
  
<div class="table-wrapper"><table class="alt">
 
  
<tr><td>E:PIF6:PhyB:VP16:luc:ren</td><td>BamHI</td><td>4209, 3756, 6100, 6674</td></tr>
+
<p>In order to do the minipreps -extraction of the plasmids out of <i>E. coli</i> the protocol of the Omega kit (Plasmid DNA Mini Kit I Spin Protocol) was used. The steps to do it are:</p>
  
<tr><td></td><td>EcoRV</td><td>3942, 2989, 2475, 381, 10952</td></tr>
+
<p>1. Centrifuge at 10.000xg for 1minute at room temperature the liquid medium with the growed bacteria.</p>
  
</div></table>
+
<p>2. Decant or aspirate and discard the culture media.</p>
  
 +
<p>3. Add 250 µl SolutionI/RNase A. Vortex or pipet up and down to mix thoroughly. Complete resuspension of cell pellet is vital for obtaining goo yields.</p>
  
 +
<p>4. Tranfer suspension into a new 1.5mL microcentrifuge tube.</p>
  
 +
<p>5. Add 250 µl Solutions II. Invert and gently rotate the tube several times to obtain a clear lysiate. A 2-3 minute incubation may be necessary.</p>
  
 +
<p>6. Add 350 µl Solution III. Inmediately invert several times until a flocculent white precipitate forms.</p>
  
<p>Gel:</p>
+
<p>7. Centrifuge at maximum speed (>13.000xg) for 10 minutes. Acompact white pellet will form. Promptly preceed to the next step.</p>
  
 +
<p>8. Insert a HiBind DNA Mini Column into a 2 mL Collection tube.</p>
  
 +
<p>9. Transfer the cleared supernatant from Step 8 CAREFULLY aspirating it into the HiBind DNA Mini Column. Be careful not to disturb the pellet and that mo cellular debris is transferred the the HiBind DNA Mini Column.</p>
  
<div class="table-wrapper"><table class="alt">
+
<p>10. Centrifuge at maximum speed for 1 minute.</p>
  
<tr><td>PIF6:PhyB:VP16:luc:ren C1 (BamHI)</td><td>PIF6:PhyB:VP16:luc:ren C3 (BamHI)</td><td>PIF6:PhyB:VP16:luc:ren C1
+
<p>11. Discard the filtrate and reuse the collection tube.</p>
  
(EcoRV)</td><td>PIF6:PhyB:VP16:luc:ren C3 (EcoRV)</td></tr>
+
<p>12. Add 500 µl HBC Buffer.</p>
  
<tr><td>no</td><td>no</td><td>no</td><td>no</td><td></td><td></td></tr>
+
<p>13. Centrifuge at maximum speed for 1 minute.</p>
  
</div></table>
+
<p>14. Discard the filtrate and reuse collection tube.</p>
  
 +
<p>15. Add 700 µl DNA Wash Buffer .</p>
  
 +
<p>16. Centrifuge at maximum speed for 1 minute.</p>
  
<img src=https://static.igem.org/mediawiki/2015/6/6a/Valencia_upv_gel_150611.png>
+
<p>17. Discard the filtrate and reuse the collection tube.</p>
  
 +
<p>18. Centrifuge the empty HiBind DNA Mini Column for 2 minutes at maximum speed to dry the column.</p>
  
 +
<p>19. Transfer the HiBind DNA Mini Column to a clean 1.5 mL microcentrifuge tube.</p>
  
<p>Transformation into <i>Agrobacterium</i>of Renilla (GB160) because we could not join this construction with PIF:PhyB
+
<p>20. Add 30-100 µl Elution Buffer or sterile deionized water directly to the center of the column membrane.</p>
  
and so we will do a cotransfection of both plasmids.Make petri dish culture.</p>
+
<p>21. Let sit at room temperature for 1 minute.</p>
  
 +
<p>22. Centrifuge at maximum speed fot 1 minute.</p>
  
  
</br><h3 style="color:green">12 June 2015</h3>
 
  
<p>The petri dish with PIF:PhyB:luc was taken out the 37ºC room and put into the fridge to pick colonies tomorrow.</p>
+
<p><b>6a. Digestion:</b></p>
  
  
  
</br><h3 style="color:green">13 June 2015</h3>
+
<p>After doing the miniprep the DNA was obtained. The next components were mixed up in a 200 µl eppendorf. After the mix was done it stayed at 37ºC, 1h.</p>
 
+
<p>Pick colonies to make liquid culture:</p>
+
 
+
<ul><li>Renilla in agrobacterium: just one colony, it was made liquid culture but check carefully the gel.</li>
+
 
+
<li>It was noticed that the piece 160, renilla, needs a pSub plasmid to replicate itself so we will transform 160 into a
+
 
+
agrobacterium with this plasmid (C58 pSub).</li>
+
 
+
</ul>
+
 
+
 
+
  
 
<div class="table-wrapper"><table class="alt">
 
<div class="table-wrapper"><table class="alt">
  
<tr><td>BxbI; &alpha;1+PhyB; &alpha;2</td></tr>
+
<tr><td>1 µl of the DNA</td></tr>
  
<tr><td>1µl BxbI</td></tr>
+
<tr><td>1 µl specific buffer</td></tr>
  
<tr><td>1 µl PhyB</td></tr>
+
<tr><td>0.5 µl of the specific enzyme</td></tr>
  
<tr><td>1 µl &Omega;2</td></tr>
+
<tr><td>7.5 µl of H<sub>2</sub>O</td></tr>
 
+
<tr><td>4.6 µl H<sub>2</sub>O</td></tr>
+
  
 
</div></table>
 
</div></table>
Line 684: Line 229:
  
  
<ul><li>Transform renilla (160) with pSub plasmid into agrobacterium and make petri dish culture. </li>
+
<p>1 µl of loading buffer is needed for each 5 µl of the digestion mix, so they were added 2 µl of loadding buffer (6x).</p>
  
</ul>
+
<p>These are the specific enzymes and buffers for each type of plasmid.</p>
  
</br><h3 style="color:green">15 June 2015</h3>
 
  
<ul><li>Repeat the ligation BxbI+35S:E-PIF6:tnos because PIF was &Omega;2</li>
 
 
</ul>
 
  
 
<div class="table-wrapper"><table class="alt">
 
<div class="table-wrapper"><table class="alt">
  
<tr><td>BxbI + 35S:E-PIF6:tnos; &Omega;1</td></tr>
+
<tr><td>Plasmid</td><td>Enzyme</td><td>Buffer</td></tr>
  
<tr><td>1µl BxbI</td></tr>
+
<tr><td>pUPD2</td><td>Not I</td><td>Orange</td></tr>
  
<tr><td>1 µl PhyB</td></tr>
+
<tr><td>Alpha  </td><td>EcoRI</td><td>Specific </td></tr>
  
<tr><td>1 µl &Omega;1</td></tr>
+
<tr><td>Omega </td><td>BamHI</td><td>Specific </td></tr>
 
+
<tr><td>4.6</td><td>µl H<sub>2</sub>O</td></tr>
+
  
 
</div></table>
 
</div></table>
Line 710: Line 249:
  
  
<ul><li>KDronpa has arrived:</li>
+
<p>The plasmids can also be cut with other enzymes if it is necessary to check the construction.</p>
  
<ul class="ul_2"><li>Centrifuge it 2-5sec at maximum velocity.</li>
 
  
<li>Add 50 µl to have a concentration of 20ng/µl</li>
 
  
<li>Mix it with the vortex and spin.</li>
+
<p><b>6b. Gel:</b></p>
  
</ul><li>Ligation:</li>
 
  
</ul>
 
  
<div class="table-wrapper"><table class="alt">
+
<p>The gel was made with buffer + dilution 1:1000 of ethidium bromide and a proportion of 0.1% of agarose.</p>
  
<tr><td>KDronpa; pUPD2</td></tr>
+
<p>The small gels had 40ml of buffer + 0.4 µl of ethidium bromide and 0.4g of agarose.</p>
  
<tr><td>1 µl KDronpa</td></tr>
+
<p>After waiting 1h to let the gel cool down, the ladders of 100bp and 1kbp are put one on each side of the gel, and the digestions in between the ladders. </p>
  
<tr><td>1 µl pUPD2</td></tr>
+
<p>The voltage to apply is 120V.</p>
  
<tr><td>5.6 µl H<sub>2</sub>O</td></tr>
+
<p>It was written in a table the DNA fragments obtained and the words “ok “ or “no” depending on if the results are correct or not. Example:</p>
  
</div></table>
 
  
 
 
 
 
<ul><li>It was not possible to pick colonies of the <i>Agrobacterium</i> transformed with renilla because they did not
 
 
grow. Maybe the problem is that with tetraciclyn bacterias grow slowly. Wait 1 day more.</li>
 
 
<li>Transformation of the ligation, BxbI+35S:E-PIF6:tnos; &Omega;1, into <i>E. coli</i>.Make petri dish culture.</li>
 
 
</ul>
 
 
</br><h3 style="color:green">16 June 2015</h3>
 
 
<ul><li>Transformation of the ligation, KDronpa, into <i>E. coli</i>.</li>
 
 
<li>Pick colonies of BxbI:E-PIF6 and make liquid culture (C1-C3).</li>
 
 
<li>Primers had arrived, it has been done the resuspension (dilution 1:10) of all of them.</li>
 
 
</ul>
 
  
 
<div class="table-wrapper"><table class="alt">
 
<div class="table-wrapper"><table class="alt">
  
<tr><td>Primers</td><td>Code </td><td>Template</td><td>Working temperature (ºC)</td></tr>
+
<tr><td>DNA1</td><td>DNA2 C1</td><td>DNA2 C2</td><td>DNA4</td></tr>
  
<tr><td>LacI F</td><td>1</td><td>LacI (858)</td><td>69.7</td></tr>
+
<tr><td>ok</td><td>no</td><td>no</td><td>ok</td></tr>
 
+
<tr><td>LacI R </td><td>2</td><td></td></tr>
+
 
+
<tr><td>Gal4 F</td><td>3</td><td>We did not take out the glicerynate.</td><td>63.2</td></tr>
+
 
+
<tr><td>Gal4 </td><td>4</td><td></td></tr>
+
 
+
<tr><td>LexA F</td><td>5</td><td>LexA (732)</td><td>62.7</td></tr>
+
 
+
<tr><td>LexA R</td><td>6</td><td></td></tr>
+
 
+
<tr><td>PIF:VP16 F</td><td>7</td><td>PIF6 (288)</td><td>60.1</td></tr>
+
 
+
<tr><td>PIFVP16 R</td><td>8</td><td></td></tr>
+
 
+
<tr><td>NDronpa F1</td><td>9</td><td>Kdronpa</td><td>67.7</td></tr>
+
 
+
<tr><td>NDronpa R1</td><td>10</td><td></td></tr>
+
 
+
<tr><td>Dronpa F2</td><td>11</td><td>58.5</td></tr>
+
 
+
<tr><td>NDronpa R2</td><td>12</td><td></td></tr>
+
  
 
</div></table>
 
</div></table>
Line 788: Line 279:
  
  
<ul><li>A PCR with all the primers and the fragments was done, the samples were put in order following the temperature
+
<p><b>7. Sequence:</b></p>
  
gradient.</li>
 
  
<ul class="ul_2"><li>The templates were in dilution 1:50, exception of KDronpa that was dilution 1:5 and the primers
 
  
1:10.</li>
+
<p>To check if the plasmid obtained has the proper construction, a Sanger sequencing was made. </p>
  
</ul></ul>
+
<p>The IMBCP has its own sequencing service.</p></p><br/>
 +
    </div>
 +
</details>
 +
<details>
 +
    <summary class="button fit">Agroinfiltration protocol</summary>
 +
    <div class="clsPadding">
 +
    <p><p>The agroinfiltration is a process that consist of introducing <i><i>Agrobacterium</i> tumefaciens</i> into a leaf plant by is underside. <i><i>Agrobacterium</i> tumefaciens</i> is a bacteria that causes the formation of tumours in some plant species like <i>Nicotiana benthamiana</i>, the one that we are working on. This bacteria carried the plasmid that have the DNA construction we want to test and as it infects the cell plants produce a transitory expression of our DNA piece. </p>
  
 +
<p>So to start the process of the agroinfiltration first of all we have to grow <i>Agrobacterium</i> in liquid culture two days, then refresh two times this first culture taking 5µl of the previous culture. The refresh cultures are only one day incubating at 28ºC. After this starts the procedure:</p>
  
 +
<p>1. Centrifuge the <i>Agrobacterium</i>cultures 10min at 3000rpm.</p>
  
<div class="table-wrapper"><table class="alt">
+
<p>2. While doing this prepare the agroinfiltration solution. It is made of 10ml of MES 10x (100mM, pH 5.6) + 1ml MgCl2 (1M) + 100µl of acetosyringone solution (200mM) it is composed by 9.8mg of acetosyringone dilute with 250µl of DMSO. Add water up to 100ml. </p>
  
<tr><td>PCR Fusion Taq (50µl)</td></tr>
+
<p>3. Eliminate the supernatant of the cultures and then add 5ml of the agroinfiltration solution. Resuspend the bacteria and let them grow in dark in the shaker. </p>
  
<tr><td>DNA template (10 µg/µl)</td></tr>
+
<p>4. Measure the OD (optical density). To do this the <i>Agrobacterium</i>culture is diluted in proportion 1:10 so it is put 900 µl of agroinfiltration solution and 100 µl of bacteria culture and then measure in the spectofotometer. Depending on the OD obtained the culture will be diluted with a quantity that gets the ODs to 0.2 (when infiltrating viral system the OD has to be 0.1).</p>
  
<tr><td>0.5 µl fusion taq</td></tr>
+
<p>5. The dilute bacteria is put in eppendorfs and are ready to agroinfiltrate.</p>
  
<tr><td>2.5 µl primer F</td></tr>
+
<p>Tips to agroinfiltrate:</p>
  
<tr><td>2.5 µl primer R</td></tr>
+
<ul><li>Do the infiltration on the young leafs without rough surface. </li>
  
<tr><td>2 µl NTPs</td></tr>
+
<li>Put the syringe with the solution that has bacteria in the undarside and gently introduce the liquid making also a bit of presure with the finger in the adaxial surface of the leaf.</li>
  
<tr><td>31.5 µl H<sub>2</sub>O</td></tr>
+
<li>Change the gloves and the syringe each time you change construction that wants to be agroinfiltrated.</li>
  
</div></table>
+
<li>Take the plants out in baches to avoid that due to de hot ambient they close their pores. </li>
 
+
 
+
 
+
</br><h3 style="color:green">17 June 2015</h3>
+
 
+
 
+
 
+
<ul><li>Pick colonies and make liquid culture of:</li>
+
 
+
<ul class="ul_2"><li>KDronpa (C1-C4)</li>
+
 
+
</ul><li>Ligations with the PCR’s products:</li>
+
 
+
<ul class="ul_2"><li>Templates PCR: 1+2, 5+6, 7+8PIF, 7+8VP16, 9+10, 11+12.</li>
+
  
 
</ul></ul>
 
</ul></ul>
  
<div class="table-wrapper"><table class="alt">
 
  
<tr><td>Template PCR; pUPD2</td></tr>
 
  
<tr><td>0.5µl template</td></tr>
+
<p> </p>  
 +
    </p><br/>
 +
    </div>
 +
</details>
 +
<details>
 +
    <summary class="button fit">Luciferase assay protocol</summary>
 +
    <div class="clsPadding">
 +
    <p><p>Before  start:</p>
  
<tr><td>1µl pUPD2</td></tr>
+
<p>This procedure is done with the Promega; kit (Dual-Luciferase Reporter Assay System).</p>
  
<tr><td>6.1µl H<sub>2</sub>O</td></tr>
+
<p>First of all is needed to agroinfiltrate the plant and let them for 2 o three days depending on how the experiment is raised. Normally in this days the plants are in darkness because our pieces to tests activates with different wavelegth of ligths. After two days discs are made, trying to take the maximum agroinfiltrated area without any nerve. The discs are put in the specific plate depending on in which ligth condition they need. The samples are taken during one or two days after the discs were made and inmediately the are put in liquid nitrogen and the storage in the -80ºC fridge.</p>
  
</div></table>
+
<p>The steps to follow are:</p>
  
 +
<p>1. The Passive lysis buffer 1x is prepared. It is used 200µl per disc of leaf. The passive lysis buffer is 5x so diluted them with destilled water, always manipulate in ice.</p>
  
 +
<p>2. Grind the freeze sample with a machine that shake the eppendorfs that had to have previusly two little metal balls or with plastic maces. </p>
  
 +
<p>3. Add to the eppendorf 150µl of passive lysis buffer 1x.</p>
  
 +
<p>4. Mix it with the vortex avoiding that they melt. Do this step in cold the maximum time possible.</p>
  
<ul><li>Minipreps of liquid cultures:</li>
+
<p>5. The samples are centrifuged in cold during 15min at 13200rpm.</p>
  
<ul class="ul_2"><li>BxbI:E-PIF6 (C1-C3)</li>
+
<p>6. A dilution 2:3 is made with the extract, to do that put in a new eppendorf 36µl of passive lyssis buffer 1x and 24µl of sample.</p>
  
</ul><li>Agarose gel with the PCRs:</li>
+
<p>7. The opaque plate to use in the luminometer is taken. 40 µl of Luciferase is added in each well.</p>
  
</ul>
+
<p>8. 10 µl of sample is added too. Wait 10min. During this time turn and configurate the luminometer.</p>
  
<img src=https://static.igem.org/mediawiki/2015/3/3a/Valencia_upv_gel_150617.png>
+
<p>9. The luciferase activity is mesured.</p>
  
 +
<p>10. 40 µl/sample +1extra of Dual Glo (1x) was prepared . The sustrate is at 50x and it is at –20ºC, the buffer to dilute it is in the fridge.</p>
  
 +
<p>11. After the first masure is done add to the wells 40 µl of Dual Glo, let it 10 min and measure the Renilla.</p>
  
<div class="table-wrapper"><table class="alt">
+
<p>12. Take the data obtained and analyze it. </p>
  
<tr><td>Template</td><td>1+2</td><td>5+6</td><td>7+8PIF</td><td>7+8VP16</td><td>9+10</td><td>11+12</td></tr>
 
  
<tr><td>Band pattern</td><td>1017</td><td>284</td><td>391</td><td>478</td><td>464</td><td>290</td></tr>
 
  
<tr><td>Gel result</td><td>ok</td><td>ok</td><td>ok</td><td>ok</td><td>No DNA</td><td>ok</td></tr>
+
<p>Things to keep in mind for the next experiment:</p>
  
</div></table>
+
<ul><li>The luminimeter (machine to measure the luminescence) has to be ready before start adding the reactants to the samples because it needs 10min to be ready.</li>
  
 
+
<li>Set the timer (10min) with the first sample of luciferase and add the reactant to the other samples as quick as possible. </li>
 
+
<ul><li>Transformation in <i>E. coli</i> of the correct ligations and make petri dishes cultures:</li>
+
 
+
<ul class="ul_2"><li>1+2, 5+6, 7+8PIF, 7+8VP16, 11+12 </li>
+
  
 
</ul></ul>
 
</ul></ul>
  
</br><h3 style="color:green">18 June 2015</h3>
+
<p> </p>
 +
    </p><br/>
 +
    </div>
 +
</details>
 +
<details>
 +
    <summary class="button fit">Western blot protocol</summary>
 +
    <div class="clsPadding">
 +
<p><b><u>DAY 1</u></b></p>
  
<ul><li>Minipreps of the liquid cultures:</li>
+
<p><b>PROTEIN EXTRACTION</b></p>
  
<ul class="ul_2"><li>KDronpa (C1-C4) </li>
+
<p>1. Harvest agroinfiltrated leaves. Grind the harvested material in liquid N2. You can store ground tissue at -80ºC.</p>
  
</ul><li>Digestions:</li>
+
<p>2. Weigh around 100 mg of ground tissue in a 1.5 ml tube. Keep sample frozen!</p>
  
</ul>
+
<p>3. Add 3 vol. ice-cold extraction buffer to each sample (300 µl buffer/100 mg tissue).</p>
  
<p>KDronpa EcoRI 2800</p>
+
<p>4. Mix thoroughly by vortexing for a few seconds. Transfer samples to ice. Repeat vortexing a few times (cooling the sample in between) till sample is completely thaw.</p>
  
<ul><li>Gel:</li>
+
<p>5. Centrifuge the extract for 15’, at > 12000xg, 4ºC.</p>
  
</ul>
+
<p>6. Transfer the supernatant to a fresh 1.5 ml tube. Samples should be kept cold at all times, work on ice!</p>
  
<div class="table-wrapper"><table class="alt">
 
  
<tr><td>Kdronpa C1</td><td>Kdronpa C2</td><td>Kdronpa C3</td><td>Kdronpa C4</td></tr>
 
  
<tr><td>no</td><td>no</td><td>ok</td><td>no</td></tr>
+
<p><b>SDS-PAGE</b></p>
  
<tr><td>Etr8:BxbI:phyB C1</td><td>Etr8:BxbI:phyB C2</td><td>Etr8:BxbI:phyB C3</td><td></td></tr>
+
<p>1. Sample Mix Preparation ( for 10 µl final volume, scale up as necessary):</p>
  
<tr><td>No</td><td>no</td><td>no</td><td></td></tr>
 
  
</div></table>
 
 
 
 
<img src=https://static.igem.org/mediawiki/2015/1/12/Valencia_upv_gel_150618.png>
 
 
 
 
<p>We discovered that the construction with BxbI did not go well because our lab college gives us the wrong piece. Thanks
 
 
Alfredo :)</p>
 
 
<ul><li>Take glicerynates out:</li>
 
 
<ul class="ul_2"><li>Gal4; pUPD2 (GB731)</li>
 
 
<li>&Omega;2</li>
 
 
<li>NoATGPromoter (GB00552)</li>
 
 
<li>Renilla (GB160)(GB159)(GB109)</li>
 
 
</ul><li>PCR:</li>
 
 
</ul>
 
  
 
<div class="table-wrapper"><table class="alt">
 
<div class="table-wrapper"><table class="alt">
  
<tr><td>NDronpa</td></tr>
+
<tr><td>Protein extract</td><td>1 to 6.5 µl</td></tr>
  
<tr><td>2.5 µl (9+10) primer F</td></tr>
+
<tr><td>NuPAGE LDS Sample buffer (x4)</td><td>2.5 µl</td></tr>
  
<tr><td>2.5 µl (11+12) primer R</td></tr>
+
<tr><td>NuPAGE LDS reducing agent (x10)</td><td>1 µl (use only for reducing conditions)</td></tr>
  
<tr><td>2 µl NTPs</td></tr>
+
<tr><td>Ultrapure H<sub>2</sub>O</td><td>0 to 5.5 µl</td></tr>
 
+
<tr><td>0.2 µl Taq</td></tr>
+
 
+
<tr><td>10 µl Buffer</td></tr>
+
 
+
<tr><td>31.5</td><td>µl H<sub>2</sub>O</td></tr>
+
  
 
</div></table>
 
</div></table>
Line 952: Line 413:
  
  
 +
<p>Mix by vortexing. Heat at 72ºC<sup>(*)</sup> for 10’. Spin briefly to collect everything at the bottom of the tube. Keep samples on ice.</p>
  
 +
<p>2. Assembling the gel and loading the samples:</p>
  
<ul><li>Ligations:</li>
+
<ul><li>Prepare 800 ml MES SDS 1x running buffer</li>
  
 
</ul>
 
</ul>
Line 960: Line 423:
 
<div class="table-wrapper"><table class="alt">
 
<div class="table-wrapper"><table class="alt">
  
<tr><td>Etr8:BxbI:T35S; &alpha;1</td><td>Template PCR; pUPD2</td></tr>
+
<tr><td>20x MES MES SDS running buffer</td><td>40 ml</td></tr>
  
<tr><td>1 µlEtr8</td><td>0.5µl template</td></tr>
+
<tr><td>Distilled H<sub>2</sub>O</td><td>760 ml</td></tr>
 
+
<tr><td>1 µl BxbI</td><td>1µl pUPD2</td></tr>
+
 
+
<tr><td>1 µl T35S</td><td>6.1µl H<sub>2</sub>O</td></tr>
+
 
+
<tr><td>1 µl &alpha;1</td><td></td></tr>
+
 
+
<tr><td>5.8 µl H<sub>2</sub>O</td><td></td></tr>
+
  
 
</div></table>
 
</div></table>
Line 976: Line 431:
  
  
<p>Templates PCR: 1+2, 5+6, 7+8PIF, 7+8VP16</p>
+
<p>Set aside 200 ml of 1x running buffer. Add 500 µl of NuPAGE antioxidant (only for reducing conditions). Mix by inversion.</p>
  
 +
<p> Take one 10% Bis-Tris NuPAGE gel out of the plastic bag and rinse with distilled H<sub>2</sub>O. Peel off the white tape at the bottom of the gel.</p>
  
 +
<ul><li>Pull out the comb.</li>
  
</br><h3 style="color:green">19 June 2015</h3>
+
<li>Insert the gel in the sure lock gel. The shorter well side of the cassettes facing inwards. Lock the gel tension wedge.</li>
  
<ul><li>We do a PCR with the normal Taq polymerase.</li>
+
<li>Fill the upper buffer chamber with the 200 ml of 1x running buffer with antioxidant. Fill  the lower buffer chamber with remaining 600 ml of 1x running buffer.</li>
  
 
</ul>
 
</ul>
  
<div class="table-wrapper"><table class="alt">
+
<p>To load the samples: insert the tip into the well and slowly pipet the sample into it.</p>
  
<tr><td>1µl of DNA’s template (9+10, 9+12 and 11+12)</td></tr>
+
<p>3. Running the gel:</p>
  
<tr><td>2µl of specific buffer</td></tr>
+
<p>Running conditions: 200 V, 40 min</p>
  
<tr><td>2µl of NTPs</td></tr>
 
  
<tr><td>1µl primer forward</td></tr>
 
  
<tr><td>1µl primer reverse</td></tr>
+
<p><b>PROTEIN TRANSFER</b></p>
  
<tr><td>0.5 µl of Taq</td></tr>
+
<p>1. Preparing for transfer:</p>
  
<tr><td>12.5 µl H<sub>2</sub>O</td></tr>
+
<ul><li>Cut 1 piece of Hybond-P PVDF membrane and 2 pieces of whatman paper of the same size of the gel (8 x 7 cm).</li>
  
</div></table>
+
<li>Prepare 500 ml of Transfer buffer:</li>
 
+
 
+
 
+
<p>These quantities multiplied by 3.</p>
+
 
+
<ul><li>Minipreps of the yesterday’s glycerinated cultures.</li>
+
 
+
<ul class="ul_2"><li>Gal4; pUPD2 (GB731)</li>
+
 
+
<li>&Omega;2</li>
+
 
+
<li>NoATGPromoter (GB00552)</li>
+
 
+
<li>Renilla (GB160)(GB159)(GB109)</li>
+
 
+
</ul><li>Do the glycerinates digestions:</li>
+
  
 
</ul>
 
</ul>
Line 1,024: Line 463:
 
<div class="table-wrapper"><table class="alt">
 
<div class="table-wrapper"><table class="alt">
  
<tr><td>Minipreps:</td><td>Enzime</td><td>Band pattern</td></tr>
+
<tr><td>Transfer buffer (x20)</td><td>25 ml</td></tr>
 
+
<tr><td>(GB159) pDGB1_&Omega;2 renilla</td><td>EcoRV</td><td>2909, 2475,882, 812, 381</td></tr>
+
 
+
<tr><td>Entry vector, &Omega;2</td><td>EcoRV</td><td>6652, 621</td></tr>
+
 
+
<tr><td>(GB552) pP35s NoATG; pUPD2</td><td>EcoRI</td><td>2997, 1090</td></tr>
+
 
+
<tr><td>(GB160) renilla pDGB1, &alpha;2 </td><td>EcoRV</td><td>4601, 2475, 381</td></tr>
+
  
<tr><td>(GB731) Gal4BD (CDS); pUPD2</td><td>EcoRI</td><td>2997, 2493</td></tr>
+
<tr><td>Methanol</td><td>50 ml</td></tr>
  
<tr><td>(GB109)</td><td>355:renilla:Tnos; &alpha;1</td><td>EcoRI</td><td>2580, 2493</td></tr>
+
<tr><td>H<sub>2</sub>O</td><td>375 ml</td></tr>
  
 
</div></table>
 
</div></table>
Line 1,042: Line 473:
  
  
<ul><li>We make an agarose gel with the digestions made before and the PCR of KDronpa. </li>
+
<ul><li>Soak 5 blotting pads in transfer buffer. Remove air bubbles by squeezing the blotting pads while they are submerged in buffer (this step is important because air bubbles may block the transfer of proteins).</li>
 
+
</ul>
+
 
+
 
+
 
+
<div class="table-wrapper"><table class="alt">
+
 
+
<tr><td>159</td><td>160</td><td>&Omega;2</td><td>552</td><td>731</td><td>109</td><td>9+10</td><td>9+12</td><td>11+12</td><
+
 
+
/tr>
+
 
+
<tr><td>ok</td><td>ok</td><td>ok</td><td>ok</td><td>ok</td><td>ok</td><td>no</td><td>ok</td><td>ok</td></tr>
+
 
+
</div></table>
+
 
+
 
+
 
+
<img src=https://static.igem.org/mediawiki/2015/0/0d/Valencia_upv_gel_150619.png>
+
 
+
  
 +
<li>Pre-wet the PVDF membrane for 10’’ in methanol. Wash in distilled water for 5’. Equilibrate in transfer buffer for at least 10’ before blotting. (Everything is done without agitation).</li>
  
<ul><li>Transformation into <i>E. coli</i> of ligations:</li>
+
<li>Wathman paper: soak briefly in transfer buffer immediately before using.</li>
  
 
</ul>
 
</ul>
  
<p>1+2, 5+6, 7+8PIF, 7+8VP16 all in pUPD2</p>
+
<ul><li>Lay the gel on the bench allowing one edge to hang 1 cm over the side. Insert the gel-knife into the gap between the gel plates and push up and down gently to break the bonds that hold the plates together. When all the bonds are broken separate the two plates and throw away the one without the gel.</li>
  
 +
<li>Cut the wells with the gel-knife.</li>
  
 +
<li>Place a piece of pre-soaked whatman paper on top of the gel. Keep the filter paper saturated with transfer buffer and remove all trapped air bubbles by gently rolling a glass pipette over the surface.</li>
  
<ul><li>We made an stack of Cloranfenicol petri dishes</li>
+
<li>Turn the plate over so that the gel and whatman paper are facing downwards over your hand or over a piece of parafilm on the bench. </li>
  
<ul class="ul_2"><li>250ml  LB agar</li>
+
<li>Remove the gel from the plate: use the gel knife to carefully loosen the bottom of the gel so that it peels away from the plate.</li>
 
+
<li>X-Gal (1:500): 500 µl</li>
+
 
+
<li>IPTG (1:1000): 250 µl</li>
+
 
+
<li>Cloranfenicol (1:2000): 125 µl</li>
+
 
+
</ul></ul>
+
 
+
</br><h3 style="color:green">20 june 2015</h3>
+
 
+
<p>We have white colonies of renilla! Also of Etr8+BxbI; &alpha;1</p>
+
 
+
<p>We have also pUPD2 colonies but they are so close to the blue ones that we can’t pick anyone.So we make strakes.</p>
+
 
+
<ul><li>We make a liquid culture of <i>Agrobacterium</i>of Renilla (rif/kan/tetr).</li>
+
  
 
</ul>
 
</ul>
  
 +
<p>3. Transferring the gel: </p>
  
 +
<ul><li>Wet the surface of the gel with transfer buffer and place a pre-soaked membrane on top of the gel. Make a small cut on one corner of the membrane to mark the orientation. Remove air bubbles by rolling a glass pipette over the membrane surface.</li>
  
</br><h3 style="color:green">21 June 2015</h3>
+
<li>Place a pre-soaked whatman paper on top of the membrane. Remove air bubbles.</li>
  
<ul><li>Pick colonies and make liquid culure of (all colonies are in pUPD2):</li>
+
<li>Place 2 soaked blotting pads into the Xcell II Blot Module. Place the paper-gel-membrane-paper sandwich on top of the blotting pads.</li>
  
<ul class="ul_2"><li>Plates : PIF (17/06/15) (C1 and C2)</li>
+
<li>Add another 3 pre-soaked blotting pad on top of the sandwich.</li>
  
<li>VP16 (C1 and C3)</li>
+
<li>Place the blot module in the buffer chamber. Lock the gel tension wedge into place.</li>
  
<li>LacI (C1-C3)</li>
+
<li>Fill the blot module with transfer buffer until the gel-membrane sandwich is covered in buffer (do not fill all the way to the top as this generates extra conductivity and heat).</li>
  
<li>Plates (19/06/15): BxbI (C1, C2, C3), </li>
+
<li>Fill the outer buffer chamber with ˜ 650 ml deionized water. </li>
  
<li>VP16 (C4, C5)</li>
+
<li>Running conditions: 30V for 2h</li>
 
+
<li>LacI (C1, C2)</li>
+
 
+
<li>PIF (C1-C5) </li>
+
 
+
<li>LexA (C1, C2)</li>
+
 
+
</ul><li>We take out two glicerynates of GFP and BFP (of the Alfredo’s box)</li>
+
  
 
</ul>
 
</ul>
  
</br><h3 style="color:green">22 June 2015</h3>
+
<p><b>BLOCKING THE MEMBRANE</b></p>
  
<ul><li>We made minipreps of the liquid culture of the day before:</li>
+
<p>1. Prepare 50 ml of blocking solution.</p>
  
<ul class="ul_2"><li>LacIBD; pUPD2 (C1-C5)</li>
+
<p>2% ECL Advance Blocking Agent in PBS-T (pH 7.5):</p>
  
<li>LexABD; pUPD2 (C1, C2)</li>
 
  
<li>Etr8(CMV):Bxb1 (C1-C3)</li>
 
  
<li>PIF6; pUPD2 (C1-C5)</li>
+
<ul><li>1 g blocking agent</li>
  
<li>VP16; pUPD2 (C1, C4, C5)</li>
+
<li>50 ml PBS (1x)</li>
  
</ul></ul>
+
<li>50 µl Tween-20</li>
 
+
<ul><li>Make the digestions of all the minipreps:</li>
+
 
+
</ul>
+
 
+
<div class="table-wrapper"><table class="alt">
+
 
+
<tr><td>LacIBD, pUPD2</td><td>NotI</td><td>2046, 1053</td></tr>
+
 
+
<tr><td>LexABD, pUPD2 </td><td>NotI</td><td>2046, 321</td></tr>
+
 
+
<tr><td>Etr8(CMV):Bxb1 </td><td>NotI</td><td>1532, 1290, 5896</td></tr>
+
 
+
<tr><td>PIF6,pUPD2 </td><td>NotI</td><td>2046, 407</td></tr>
+
 
+
<tr><td>VP16, pUPD2 </td><td>NotI</td><td>2046, 500</td></tr>
+
 
+
</div></table>
+
 
+
 
+
 
+
<ul><li>Refresh the viral system that a lab mate borrow to us. This is going to be use to agroinfiltrate some plants to
+
 
+
make some cool draws to sent to a TV programm so they can watch what are we doing. This cultures consist of three parts
+
 
+
divided in three <i>Agrobacterium</i>colonies. They are the citoplasm, the fluerescent protein (GFP, DsRed or YFP) and the
+
 
+
integrase, in our case PhiC31.</li>
+
 
+
</ul>
+
 
+
 
+
 
+
<ul><li>We received the reporter BxbI (RepBxbI)!</li>
+
 
+
<ul class="ul_2"><li>500ng of sample</li>
+
 
+
<li>Centrifuge at 3000rpm for 5 seconds (spin).</li>
+
 
+
<li>Add 50 µl H<sub>2</sub>O</li>
+
 
+
<li>Shake it and let at 50ºC for 20min</li>
+
 
+
</ul><li>Make a PCR of Gal4 and NDronpa (9-10), the primers of NDronpa are aliquoted.</li>
+
 
+
</ul>
+
 
+
 
+
 
+
<p>Make an agarose gel with all the digestions:</p>
+
 
+
 
+
 
+
<div class="table-wrapper"><table class="alt">
+
 
+
<tr><td>LacI C1</td><td>LacI C2</td><td>LacI C3</td><td>LacI C4</td><td>LacI C5</td><td>LexA C1</td><td>LexA
+
 
+
C2</td><td>BxbI C1</td><td>BxbI C2</td><td>BxbI C3</td></tr>
+
 
+
<tr><td>Ok</td><td>ok</td><td>ok</td><td>ok</td><td>ok</td><td>no</td><td>no</td><td>ok</td><td>ok</td><td>no</td></tr>
+
 
+
<tr><td>PIF C1</td><td>PIF C2</td><td>PIF C3</td><td>PIF C4</td><td>PIF C5</td><td>VP16 C1</td><td>VP16 C4</td><td>VP16
+
 
+
C5</td><td></td></tr>
+
 
+
<tr><td>No</td><td>no</td><td>-</td><td>ok</td><td>ok</td><td>ok</td><td>ok</td><td>ok</td><td></td></tr>
+
 
+
<tr><td>Gal4</td><td>NDronpa 1</td><td>NDronpa 2</td><td></td><td></td></tr>
+
 
+
<tr><td></td><td></td><td></td><td></td><td></td><td></td></tr>
+
 
+
</div></table>
+
 
+
 
+
 
+
<p>FOTO </p>
+
 
+
<ul><li>We make ligations of:</li>
+
 
+
<ul class="ul_2"><li>Etr8(CMV):BxbI; &alpha;1 + PhyB:VP16;&alpha;2; &Omega;1</li>
+
 
+
<li>LacIBD;pUPD2 + PIF6BDPless; pUPD2; &alpha;1</li>
+
 
+
<li>KDronpa;pUPD2 + LacIBD; pUPD2; &alpha;1</li>
+
 
+
<li>Gal4BD; pUPD2</li>
+
 
+
<li>Reporter of BxbI; pUPD2</li>
+
  
 
</ul></ul>
 
</ul></ul>
  
<ul><li>Tomorrow we have to take out pUPD2 of constitutive promoters, terminators and GFP (CDS).</li>
+
<p>2. Take the membrane out of the blotting module and transfer it to the blocking solution (protein side up, work always this way from now on). Leave o/n at 4ºC.</p>
 
+
</ul>
+
 
+
</br><h3 style="color:green">23 June 2015</h3>
+
 
+
 
+
  
<ul><li>Transform into E.Coli the 5 ligations done yesterday and two more transformations of 5+6(1) and 5+6(2) which are
 
  
the ligations in pUPD2 of the 18/06. </li>
 
  
<ul class="ul_2"><li>Etr8(CMV):BxbI; &alpha;1 + PhyB:VP16;&alpha;2; &Omega;1</li>
+
<p><b><u>DAY 2</u></b></p>
  
<li>LacIBD;pUPD2 + PIF6BDPless; pUPD2; &alpha;1</li>
+
<p><b>DETECTION</b></p>
  
<li>KDronpa;pUPD2 + LacIBD; pUPD2; &alpha;1</li>
+
<p>1. Prepare 2 L of  wash buffer (PBS-0.1% Tween (pH 7.5))</p>
  
<li>Gal4BD; pUPD2</li>
+
<ul><li>200 ml PBS 5x (pH 7.5)</li>
  
<li>Reporter of BxbI; pUPD2</li>
+
<li>800 ml distilled H<sub>2</sub>O</li>
  
<li>LexABD (5+6), pUPD2 (1 and 2)</li>
+
<li>1 ml Tween 20</li>
  
 
</ul></ul>
 
</ul></ul>
  
<ul><li>We have taken out of the -80ºC fridge the glycerinate of GFP; pUPD2 (GB0059)/ampicilin.</li>
+
<p>3. Prepare 10 ml of antibody diluent (2% ECL Advance blocking agent in PBS-0.1%Tween) for each antibody you are going to use.</p>
  
<li>The liquid culture of Renilla (ryfampicin/kanamycin/tetracyclin) does not grow after the two days required. So we
+
<p>4. For 6x His-tag detection: dilute the Anti-His6 mouse monoclonal antibody 1:2000 in 10 ml of antibody diluent (5 µl antibody in 10 ml antibody diluent). Incubate for 1h at RT on a shaker.</p>
  
decide to refresh two new colonies, one of them in a tube with the three antibiotics and another with rifampicina and  
+
<p>For IgA detection: dilute the Anti-IgaH antibody 1:20000 in 10 ml of antibody diluent (0.5 µl antibody in 10 ml antibody diluent).  Incubate for 1h at RT on a shaker. This antibody is already conjugated to HRP and does not need a secondary antibody for detection; go directly to step 8 after the 1 incubation.</p>
  
kanamicine. Asun says that the tetracycline slow down the growth of Agro.</li>
+
<p>5. Discard the antibody solution and wash the membrane with wash buffer:</p>
  
<li>The 4 liquid cultures of LexA+IPTG/+gal are all blue: throw them.</li>
+
<ul><li>2 x brief wash</li>
  
<li>We ordered again the primer n?0 (NDronpa R1). Changing one codon in 3?and delete another in 5?</li>
+
<li>1 x 15’ wash (RT, shaker)</li>
  
</ul>
+
<li>3 x 5’ wash (RT, shaker)</li>
 
+
</br><h3 style="color:green">24 June 2015</h3>
+
 
+
<p>Pick colonies of the plates done yesterday and pass them into a liquid medium:</p>
+
 
+
<ul><li>LacIBD+PIF; &alpha;1 (C1, C2)</li>
+
 
+
<li>Gal4BD; pUPD2 (C1)</li>
+
 
+
<li>RepBxb1; pUPD2 (C1-C3)</li>
+
 
+
<li>LacIBD+KDonpa; &alpha;1 (C1, C2)</li>
+
 
+
<li>Etr8(CMV)+BxbI+PhyB+VP16; &Omega;1 (C1)</li>
+
 
+
<li>LexABD1; pUPD2 (C1-C4)</li>
+
 
+
<li>LexABD2; pUPD2. No colonies.</li>
+
 
+
</ul></ul>
+
 
+
<p>The viral systems of <i>Agrobacterium</i>cultures to make the color mosaics are ready after 2 days at 28ºC. We can make
+
 
+
the agroinfiltration.</p>
+
 
+
<p>Protocol to prepare solution to agroinfiltrate in the protocols notebook part.</p>
+
 
+
 
+
 
+
<ul><li>Ligation:</li>
+
  
 
</ul>
 
</ul>
  
<div class="table-wrapper"><table class="alt">
+
<p>7. Incubate the membrane with the secondary antibody for 1h at RT on a shaker.</p>
  
<tr><td>ETR8(CMV):BxbI; &alpha;1+PhyB:VP16; &alpha;2; &Omega;1 </td><td>Gal4BD(pcr) + pUPD2</td></tr>
+
<p>8. Repeat step 5.</p>
  
<tr><td>1.5 µl Etr8:BxbI</td><td>1 µl Gal4 PCR</td></tr>
+
<p>9. Take the detection reagents from the fridge and allow to equilibrate to RT before opening.</p>
  
<tr><td>1.5 µl 88E (PhyB:VP16)</td><td>1 µl pUPD2</td></tr>
+
<p>10. Mix detection solutions ECL Plus A and B in a ratio 40:1. </p>
  
<tr><td>1 µl &Omega;1</td><td>5,6 µl H<sub>2</sub>O</td></tr>
+
<p> 975 µl Sol. A + 25 µl Sol. B (enough for 1 membrane)</p>
  
<tr><td>3.6µl H<sub>2</sub>O</td><td></td></tr>
+
<p>11. Drain the excess wash buffer from the membrane by holding the membrane gently with forceps and touching the edge against a tissue. Place the membrane protein side up on an acetate sheet. Pipette the mixed detection reagent on to the membrane. </p>
  
</div></table>
+
<p>12. Cover the membrane with another acetate sheet and gently smooth out any air bubbles, but do not apply pressure over the membrane. Dry any extra liquid with tissue.</p>
  
 +
<p>13. Place a piece of filter paper on a X-ray film cassette (fix with tape). Drain excess of detection solution with a tissue and place the wrapped blots on top of the paper (fix with tape). Close the cassette and take to the dark room together with the autoradiography films and timer.</p>
  
 +
<p>14. Switch on the film processor (front panel, lower right corner). Check that the temperate selector on top of the switch on button is on position 2. Turn off the light and with the red light on open the cassette and place a sheet of autoradiography film on top of the membrane (bend the lower right corner to mark the orientation). Close the cassette and expose the film for 1’. To develop the film place it on the rear feeding tray (shorter side of the film opposite to the bent corner against the feeding area to minimize the possibility that the film gets stack in the processor) and press the button next to it to start the feeding. Adjust exposure time as necessary.</p>
 +
 +
    </p><br/>
 +
    </div>
 +
</details>
 +
<details>
 +
    <summary class="button fit">Protoplasts protocol</summary>
 +
    <div class="clsPadding">
 +
    <p><p>We make protoplasts in to different ways. At first we make protoplasts with a normal Nicotiana leaf and then we try to transform the alive protoplasts. After the infiltration at vacuum we can not obtain protoplasts, we change the method. First we agroinfiltrate leafs with the desired construction, we let them 3 hours in dark and then make the protoplasts. The general steps for every preparation is:</p>
  
<p>Quantification of DNA:</p>
+
<p>1. Prepare the enzymatic solution. It has 5mL of Mannitol (0.8M) + 200 µl KCl (1M) + 400 µl MES (0.5M, pH 5.7) + 150ng cellulase + 40mg Macerozyme + 4.2mL H<sub>2</sub>O. Total volume for one preparation. Put it 10min at 55ºC. </p>
  
<ul><li>GFP (GB0059); pUPD2: 249 ng/µl</li>
+
<p>2. Take out the solution and let it cool down.</p>
  
<li>&Omega;2: 238 ng/µl</li>
+
<p>3. Add 100 µl CaCl<sub>2</sub> + 4 µl Beta-Mercaptoethanol + 100 µl BSA (10%).</p>
  
<li>Alfredo’s pUPD2, domesticator: 102 ng/µl</li>
+
<p>4. Put the enzymatic solution in a petri dish and cut the leaf in very thin strips. Put quickly the cut leafs so they do not dry.</p>
  
<li>iGEM704: 405 ng/µl</li>
+
<p>5. In darkness, do the vacuum for 30min to the petri dish with the enzymatic solution and the cut leaf. Let the leaf 3h in darkness, no agitation.</p>
  
<li>iGEM735: 403 ng/µl</li>
+
<p>6. Swirl the plate gently. Using a 5ml pipette tip (cut off the tip first) take the liquid and filter them with a 35-75 µm nylon mesh into a 13 mL tube. To clean the mesh add before a little bit of W5 solution. Also put the leaf stripes first and then throw the enzymatic solution.</p>
  
<li>552 AMP 35S noATG: 45 ng/µl</li>
+
<p>7. Add 5ml of W5 solution.</p>
  
<li>PIF (C5), pUPD2: 119 ng/µl</li>
+
<p>8. Centrifuge at 100xg for 1min without brake.</p>
  
<li>pD6B3, &Omega;2 (22/06): 158 ng/µl</li>
+
<p>9. Eliminate the supernatant. Leave a small volume so that the protoplasts do not dry.</p>
  
<li>LacIBD (C1); pUPD2 (22/06): 129 ng/µl</li>
+
<p>10. Add WI solution till reach the desired concentration (10<sup>7</sup> protoplasts per gram). </p>
  
<li>109 renillaDC: 49 ng/µl</li>
+
<p>11. Finally put into the plate wells 250 µl of W5 and 100 µl of protoplasts solution.</p>
  
<li>IGEM 534: 13.6 ng/µl</li>
+
<p>Solutions:</p>
  
<li>VP16 (C1); pUPD2:102 ng/µl</li>
+
<p>W5: NaCl (154mM) + CaCl<sub>2</sub> (125mM) + KCl (5mM) + MES (2mM) + 17.8ml H20. Total volume of 50ml.</p>
  
<li>IGEM 1097: 409 ng/µl</li>
+
<p>WI: MES (4mM)(pH 5.7) + NaCl (154mM) + CaCl<sub>2</sub> (20mM).</p>
 +
    </p><br/>
 +
    </div>
 +
</details>
 +
<details>
 +
    <summary class="button fit">Protoplast luciferase assay protocol</summary>
 +
    <div class="clsPadding">
 +
    <p><p>Before doing the essay the protoplasts are in a plate in the light conditions needed.</p>
  
<li>KDronpa (C3); pUPD2 (18/06): 174 ng/µl</li>
+
<p>1. Take the solution with protoplasts and put it in an Eppendorf.</p>
  
<li>IGEM 858: 487 ng/µl</li>
+
<p>2. Centrifugue at 100xg for 1min.</p>
  
<li>731AMP Gal4 (19/06): 81 ng/µl</li>
+
<p>3. Eliminate the maximum supernatant letting the protoplasts.</p>
  
<li>IGEM pUPD2 domesticator: 87 ng/µl</li>
+
<p>4. Put into liquid nitrogen and then keep it in the -80ºC fridge.</p>
  
<li>PIF+PhyB (C1) (08/06): 108 ng/µl</li>
+
<p>Start the essay:</p>
  
<li>160 renilla, &alpha;2 (19/06): 46 ng/µl</li>
+
<p>5. Add to the freeze sample 100µl of Passive lysis buffer (1x).</p>
  
<li>159 renilla, &Omega;2 (19/06): 149 ng/µl</li>
+
<p>6. Vortex the samples.</p>
  
<li>Etr8:BxbI (C1)(22/06): 149 ng/µl</li>
+
<p>7. Let it 5min in ice.</p>
  
<li>IGEM 732: 422 ng/µl</li>
+
<p>8. Centrifuge it at 1000xg for 2min.</p>
  
</ul></ul>
+
<p>9. Eliminate the supernatant.</p>
  
 +
<p>10. Take an opaque plate to measure the luciferase and put in each well 40 µl of Luciferase and 10 µl of sample, wait 10min and then measure.</p>
  
 
+
<p>11. Add to the wells 40 µl of Dual Glo (1x) and measure the renilla luminiscence.</p>
</br><h3 style="color:green">25 June 2015</h3>
+
 
+
<p>Minipreps of the liquid culture:</p>
+
 
+
<ul><li>We don’t observed growth in LacIBD+PIF and LacIBD+KDronpa.</li>
+
 
+
</ul></ul>
+
 
+
<p>Digestion of the minipreps and do the gel:</p>
+
 
+
 
+
 
+
<div class="table-wrapper"><table class="alt">
+
 
+
<tr><td>Gal4BD; pUPD2</td><td>NotI</td><td>2046, 282</td></tr>
+
 
+
<tr><td>RepBxbI; pUPD2</td><td>NotI</td><td>2046, 460</td></tr>
+
 
+
<tr><td>Etr8(CMV):BxbI:PhyB; &alpha;1</td><td>BamHI</td><td>6674, 2237, 2806, 1174</td></tr>
+
 
+
<tr><td>LexABD; pUPD2</td><td>NotI</td><td>2046, 321</td></tr>
+
 
+
<tr><td>9+10; pUPD2</td><td>NotI</td><td>464</td></tr>
+
 
+
</div></table>
+
 
+
 
+
 
+
<p>Gel:</p>
+
 
+
 
+
 
+
<div class="table-wrapper"><table class="alt">
+
 
+
<tr><td>Etr8:BxbI</td><td>LexA C1</td><td>LexA C2</td><td>LexA C3</td><td>LexA C4</td><td>RepBxbI C1</td><td>RepBxbI
+
 
+
C2</td><td>RepBxbI C3</td><td>Gal4 C1</td><td>PCR 9+10</td></tr>
+
 
+
<tr><td>no</td><td>no</td><td>no</td><td>no</td><td>no</td><td>ok</td><td>ok</td><td>ok</td><td>no</td><td>ok</td></tr>
+
 
+
</div></table>
+
 
+
 
+
 
+
<img src=https://static.igem.org/mediawiki/2015/2/2c/Valencia_upv_gel_150625.png>
+
 
+
 
+
 
+
<ul><li>We make a PCR of the Fusion Taq pH (proof-reading) to prove that the primer received number 10. This new one
+
 
+
works! Amplify the sequence of NDronpa (R1).</li>
+
 
+
<li>Refresh the cultures of <i>Agrobacterium</i>with the viral system. Add only ryfampicin and kanamycin.</li>
+
 
+
<li>Ligations:</li>
+
 
+
</ul>
+
 
+
<div class="table-wrapper"><table class="alt">
+
 
+
<tr><td>N-dronpa; pUPD2</td><td>RepBxbI; &alpha;1</td><td>Gal4BD, pUPD2</td><td>LexABD; pUPD2</td></tr>
+
 
+
<tr><td>1 µl PCR 9+10</td><td>1 µl Rep Bxb1</td><td>1 µl PCR 3+4</td><td>1 µl PCR 5+6</td></tr>
+
 
+
<tr><td>1 µl PCR11+12</td><td>1 µl Promoter without ATG</td><td>1 µl pUPD2</td><td>1 µl pUPD2</td></tr>
+
 
+
<tr><td>1 µl pUPD2</td><td>1 µl Tnos</td><td></td></tr>
+
 
+
<tr><td></td><td>1 µl &alpha;1</td></tr>
+
 
+
<tr><td>4,6 µl H<sub>2</sub>O</td><td>3,6 µl H<sub>2</sub>O</td><td>5,6 µl H<sub>2</sub>O</td><td>5,6 µl
+
 
+
H<sub>2</sub>O</td></tr>
+
 
+
</div></table>
+
 
+
 
+
 
+
<div class="table-wrapper"><table class="alt">
+
 
+
<tr><td>Etr8:BxbI+PhyB; &Omega;1</td><td></td></tr>
+
 
+
<tr><td>1 µl Etr8:BxbI</td><td></td></tr>
+
 
+
<tr><td>1 µl 88E</td><td></td></tr>
+
 
+
<tr><td>1µl &Omega;1</td><td></td></tr>
+
 
+
<tr><td>3,6 µl H<sub>2</sub>O</td><td></td></tr>
+
 
+
</div></table>
+
 
+
 
+
 
+
<p>Transform ligations into E.Coli and make petri dish cultures with cloranfenicol for all of them except the ligation of
+
 
+
Etr8:Bxb1+PhyB that goes with streptomycin.</p>
+
 
+
 
+
 
+
</br><h3 style="color:green">26 June 2015</h3>
+
 
+
<p>Do ligations: </p>
+
 
+
 
+
 
+
<div class="table-wrapper"><table class="alt">
+
 
+
<tr><td>RepBxbI+GFP; &alpha;2</td><td>LacIBD+PIF6; &alpha;1</td></tr>
+
 
+
<tr><td>1 µl RepBxbI</td><td>1 µl LacIBD, pUPD2</td></tr>
+
 
+
<tr><td>1 µl promoter without ATG</td><td>1 µl PIF6, pUPD2</td></tr>
+
 
+
<tr><td>1 µl Tnos</td><td>1 µl promoter</td></tr>
+
 
+
<tr><td>1µl GFP (0059)</td><td>1 µl T35</td></tr>
+
 
+
<tr><td>1 µl &alpha;2</td><td>1 µl &alpha;1</td></tr>
+
 
+
<tr><td>2.6 µl H<sub>2</sub>O</td><td>2.6 µl H<sub>2</sub>O</td></tr>
+
 
+
<tr><td></td></tr>
+
 
+
</div></table>
+
 
+
 
+
 
+
<p>Digestion:</p>
+
 
+
 
+
 
+
<div class="table-wrapper"><table class="alt">
+
 
+
<tr><td>LacIBD+PIF6; &alpha;1</td><td>EcoRI</td><td>6345, 1997, 641</td></tr>
+
 
+
</div></table>
+
 
+
 
+
 
+
<p>Gel:</p>
+
 
+
 
+
 
+
<div class="table-wrapper"><table class="alt">
+
 
+
<tr><td>LacIBD+PIF C1</td><td>LacIBD+PIF C2</td></tr>
+
 
+
<tr><td>no</td><td>no</td></tr>
+
 
+
</div></table>
+
 
+
 
+
 
+
<p>Both of them present the fragment of the vector at 6000 pb but none of them at 2000bp which is the insert one.</p>
+
 
+
 
+
 
+
<img src=https://static.igem.org/mediawiki/2015/3/35/Valencia_upv_gel_150626.png>
+
 
+
 
+
 
+
<p>Measurement of the ODs of PhyB:PIF6:luc and renilla+P19.</p>
+
 
+
 
+
 
+
<div class="table-wrapper"><table class="alt">
+
 
+
<tr><td>PhyB:PIF6:luc: 0.35 (1:2)</td><td>0.35</td><td>1.429 µl</td></tr>
+
 
+
<tr><td>Ren+P19: 0.34 (1:2)</td><td>0.34</td><td>1.412 µl</td></tr>
+
 
+
</div></table>
+
 
+
 
+
 
+
<ul><li>Ligation of: </li>
+
 
+
</ul>
+
 
+
<div class="table-wrapper"><table class="alt">
+
 
+
<tr><td>LacIBD; pUPD2+KDronpa; pUPD2; &alpha;1</td></tr>
+
 
+
<tr><td>1 µl 35S</td></tr>
+
 
+
<tr><td>1 µl LacIBD;pUPD2</td></tr>
+
 
+
<tr><td>1 µl KDronpa; pUPD</td></tr>
+
 
+
<tr><td>1 µl T35S</td></tr>
+
 
+
<tr><td>1 µl &alpha;1</td></tr>
+
 
+
<tr><td>2.6 µl H<sub>2</sub>O</td></tr>
+
 
+
</div></table>
+
 
+
 
+
 
+
<p>1?EXPERIMENT. Red toggle. E:PIF6:PhyB and renilla. For more info, click here.</p>
+
 
+
 
+
 
+
</br><h3 style="color:green">27 June 2015</h3>
+
 
+
<p>Transformation into <i>E. coli</i> of LacIBD+KDronpa; &alpha;1 and make petri dish culture.</p>
+
 
+
<p>Make petri dish culture of LexABD and Etr8(CMV):Bxb1:GFP.</p>
+
 
+
<p>We make liquid culture of:</p>
+
 
+
<ul><li>RepBxbI:GFP (C1-C4)</li>
+
 
+
<li>LacIBD+PIF6 (C1-C5)</li>
+
 
+
<li>NDronpa (C1-C4)</li>
+
 
+
<li>Gal4BD (C1-C5)</li>
+
 
+
<li>LexABD (C1-C3)</li>
+
 
+
</ul></ul>
+
 
+
</br><h3 style="color:green">28 June 2015</h3>
+
 
+
<p>Do the minipreps of the liquid cultures that have grown.</p>
+
 
+
<ul><li>RepBxbI:GFP (C1 and C2)</li>
+
 
+
<li>LacIBD+PIF6 (C1-C4)</li>
+
 
+
<li>NDronpa (C1-C4)</li>
+
 
+
<li>Gal4BD (C1-C5)</li>
+
 
+
<li>LexA: didn’t grow</li>
+
 
+
</ul></ul>
+
 
+
<p>Do the digestions of the minipreps:</p>
+
 
+
 
+
 
+
<div class="table-wrapper"><table class="alt">
+
 
+
<tr><td>LacIBD+PIF; &alpha;1</td><td>EcoRI</td><td>6345, 1997, 641</td></tr>
+
 
+
<tr><td>RepBxbI:GFP; &Omega;2</td><td>HindIII</td><td>6345, 2683</td></tr>
+
 
+
<tr><td>Gal4BD; pUPD2</td><td>NotI</td><td>2681, 644</td></tr>
+
 
+
<tr><td>NDronpa; pUPD2</td><td>NotI</td><td>2046, 744</td></tr>
+
 
+
</div></table>
+
 
+
 
+
 
+
 
+
 
+
<p>Make the gel.</p>
+
 
+
 
+
 
+
<div class="table-wrapper"><table class="alt">
+
 
+
<tr><td>RepBxbI:GFP C1</td><td>RepBxbI:GFP C2</td><td>LacIBD+PIF C1</td><td>LacIBD+PIF C2</td><td>LacIBD+PIF
+
 
+
C3</td><td>LacIBD+PIF C4</td></tr>
+
 
+
<tr><td>no</td><td>no</td><td>no</td><td>no</td><td>no</td><td>No</td></tr>
+
 
+
<tr><td>Gal4BD C1</td><td>Gal4BD C2</td><td>Gal4BD C3</td><td>Gal4BD C4</td><td>Gal4BD C5</td><td>N-Dronpa C1</td></tr>
+
 
+
<tr><td>ok</td><td>ok</td><td>ok</td><td>ok</td><td>ok</td><td>ok</td></tr>
+
 
+
<tr><td>N-Dronpa C2</td><td>N-Dronpa C3</td><td>N-Dronpa C4</td><td></td><td></td></tr>
+
 
+
<tr><td>no</td><td>ok</td><td>ok</td><td></td><td></td></tr>
+
 
+
</div></table>
+
 
+
 
+
 
+
<img src=https://static.igem.org/mediawiki/2015/c/c7/Valencia_upv_gel_150628.png>
+
 
+
 
+
 
+
<p>Take glycerinated:</p>
+
 
+
<ul><li>GB0030: p35S</li>
+
 
+
<li>GB0036: T35S</li>
+
 
+
</ul></ul>
+
 
+
<ul><li>Make liquid culture of LexABD (C1-C4).</li>
+
 
+
<li>We transform again LacIBD:KDronpa and RepBxb1:GFP, adding to the agar plates 100 µl of each transformation. </li>
+
 
+
</ul></ul>
+
 
+
</br><h3 style="color:green">29 June 2015</h3>
+
 
+
<p>Do the minipreps of the 4 colonies of LexABD and both glycerinates, 35S and T35S.</p>
+
 
+
<p>Do the digestion of the minipreps:</p>
+
 
+
 
+
 
+
<div class="table-wrapper"><table class="alt">
+
 
+
<tr><td>LexABD; pPPD2</td><td>NotI</td><td>2358, 312</td></tr>
+
 
+
<tr><td>35S; pUPD2</td><td>NotI</td><td>2981, 1074</td></tr>
+
 
+
<tr><td>T35S; pPUD2</td><td>NotI</td><td>2981, 304</td></tr>
+
 
+
</div></table>
+
 
+
 
+
 
+
<p>Make the gel:</p>
+
 
+
 
+
 
+
<div class="table-wrapper"><table class="alt">
+
 
+
<tr><td>LexA C1</td><td>LexA C2</td><td>LexA C3</td><td>LexA C4</td><td>P35S</td><td>T35S</td></tr>
+
 
+
<tr><td>ok</td><td>ok</td><td>ok</td><td>ok</td><td>Ok?</td><td>Ok?</td></tr>
+
 
+
</div></table>
+
 
+
 
+
 
+
<img src=https://static.igem.org/mediawiki/2015/e/e9/Valencia_upv_gel_150629.png>
+
 
+
 
+
 
+
<p>Make ligations:</p>
+
 
+
 
+
 
+
<div class="table-wrapper"><table class="alt">
+
 
+
<tr><td>LacIBD+KDronpa+promoter+termi; &alpha;1</td><td>Gal4BD+KDonpa+prom+ter; &alpha;1</td><td>LexABD+KDronpa+prom+term;
+
 
+
&alpha;1</td></tr>
+
 
+
<tr><td>1 µl LacI; pUPD2</td><td>1 µl Gal4; pUPD2</td><td>1 µl Gal4; pUPD2</td></tr>
+
 
+
<tr><td>1 µl KDronpa; pUPD2</td><td>1 µl KDronpa; pUPD2</td><td>1 µl KDronpa; pUPD2</td></tr>
+
 
+
<tr><td>1 µl 35S (GB0030)</td><td>1 µl 35S (GB0030)</td><td>1 µl 35S (GB0030)</td></tr>
+
 
+
<tr><td>1 µl T35S (GB0036)</td><td>1 µl T35S (GB0036)</td><td>1 µl T35S (GB0036)</td></tr>
+
 
+
<tr><td>2.6 µl H<sub>2</sub>O</td><td>2.6 µl H<sub>2</sub>O</td><td>2.6 µl H<sub>2</sub>O</td></tr>
+
 
+
<tr><td>1 µl &alpha;1</td><td>1 µl &alpha;1</td><td>1 µl &alpha;1</td></tr>
+
 
+
</div></table>
+
 
+
 
+
 
+
<div class="table-wrapper"><table class="alt">
+
 
+
<tr><td>NDronpa+VP16; &alpha;2</td><td>Gal4BD+PIF6; &alpha;1</td><td>LacIBD+PIF6; &alpha;1</td></tr>
+
 
+
<tr><td>1 µl NDronpa; pUPD2</td><td>1 µl Gal4BD; pUPD2</td><td>1 µl LacIBD; pUPD2</td></tr>
+
 
+
<tr><td>1 µl VP16; pUPD2</td><td>1 µl PIF6; pUPD2</td><td>1 µl PIF6; pUPD2</td></tr>
+
 
+
<tr><td>1 µl 35S (GB0030)</td><td>1 µl 35S (GB0030)</td><td>1 µl 35S (GB0030)</td></tr>
+
 
+
<tr><td>1 µl T35S (GB0036)</td><td>1 µl T35S (GB0036)</td><td>1 µl T35S (GB0036)</td></tr>
+
 
+
<tr><td>2.6 µl H<sub>2</sub>O</td><td>2.6 µl H<sub>2</sub>O</td><td>2.6 µl H<sub>2</sub>O</td></tr>
+
 
+
<tr><td>1 µl &alpha;2</td><td>1 µl &alpha;1</td><td>1 µl &alpha;1</td></tr>
+
 
+
</div></table>
+
 
+
 
+
 
+
<div class="table-wrapper"><table class="alt">
+
 
+
<tr><td>LexABD+PIF6; &alpha;1</td></tr>
+
 
+
<tr><td>1 µl LexABD; pUPD2</td></tr>
+
 
+
<tr><td>1 µl PIF6; pUPD2</td></tr>
+
 
+
<tr><td>1 µl 35S (GB0030)</td></tr>
+
 
+
<tr><td>1 µl T35S (GB0036)</td></tr>
+
 
+
<tr><td>2.6 µl H<sub>2</sub>O</td></tr>
+
 
+
<tr><td>1 µl &alpha;2</td></tr>
+
 
+
</div></table>
+
 
+
 
+
 
+
<ul><li>Transform all the ligations into E.Coli. Gal4BD+K-Dronpa and LacIBD+K-Dronpa went wrong and we have to do it
+
 
+
again. </li>
+
 
+
</ul>
+
 
+
<p>Sent N-Dronpa with the primers 9 and 12 to sequence to check if the codon that synthetize for the amino acid K has
+
 
+
change to the amino acid N.</p>
+
 
+
<p>Quantification of DNA:</p>
+
 
+
<ul><li>RepBxbI:GFP (C1): 163.8 ng/µl</li>
+
 
+
<li>NDronpa; pUPD2 (C4):113.1 ng/µl</li>
+
 
+
<li>NDronpa (C3): 83.2 ng/µl</li>
+
 
+
<li>NDronpa (C1): 116.6 ng/µl</li>
+
 
+
<li>Gal4BD (C1): 95.2 ng/µl</li>
+
 
+
<li>Gal4BD (C2): 120.7 ng/µl</li>
+
 
+
<li>RepBxbI:GFP (C2): 170.6 ng/µl</li>
+
 
+
<li>RepBxbI (C1): 80.6 ng/µl</li>
+
 
+
</ul></ul>
+
 
+
</br><h3 style="color:green">30 June 2015</h3>
+
 
+
<p>Transform Gal4+KDronpa and LacI+KDronpa and make petri dish culture.</p>
+
 
+
<p>Miniprep of:</p>
+
 
+
<ul><li>RepBxbI+GFP (C1-C3)</li>
+
 
+
</ul></ul>
+
 
+
 
+
 
+
<div class="table-wrapper"><table class="alt">
+
 
+
<tr><td>RepBxb1+GFP; &Omega;2</td><td>HindIII</td><td>6345, 2683</td></tr>
+
 
+
</div></table>
+
 
+
 
+
 
+
<p>Gel:</p>
+
 
+
 
+
 
+
<div class="table-wrapper"><table class="alt">
+
 
+
<tr><td>RepBxbI+GFP C1</td><td>RepBxbI+GFP C2</td><td>RepBxbI+GFP C3</td></tr>
+
 
+
<tr><td>No</td><td>no</td><td>no</td></tr>
+
 
+
</div></table>
+
 
+
 
+
 
+
<img src=https://static.igem.org/mediawiki/2015/8/8a/Valencia_upv_gel_150630.png>
+
 
+
<p>We pick more colonies of RepBxb1+GFP, &Omega;2 and make liquid cultures.</p>
+
  
 
<p> </p>
 
<p> </p>
 
+
    </div>
 
+
</details>
 
+
</div>
<p>Make liquid culture of:</p>
+
 
+
<p>LexABD+KDronpa+prom+term; &alpha;1 (C1 and C2)</p>
+
 
+
<p>NDronpa+VP16; &alpha;2 (C1 and C2)</p>
+
 
+
<p>Gal4BD+PIF6; &alpha;1 (C1 and C2)</p>
+
 
+
<p>LacIBD+PIF6; &alpha;1 (C1 and C2)</p>
+
 
+
<p>LexABD+PIF6; &alpha;1 (C1 and C2)</p>
+
 
+
 
+
 
+
<p>Take out a glycerinate 35S:Luciferase:Tnos (GB0227) and do a miniprep.</p>
+
 
+
 
+
 
+
<!--End of notebook-->
+
  
 
<br/>
 
<br/>
 
+
<ul class="actions" style="text-align:right">
 +
<li><a href="https://2015.igem.org/Team:Valencia_UPV/Notebook/Content#scroll1" class="button alt">Go to Daily notebook</a></li>
 +
</ul>
 
 
 
</section>
 
</section>
Line 1,872: Line 665:
  
 
</html>
 
</html>
 +
{{:Team:Valencia_UPV/Templates:footerUPV2}}
 
{{:Team:Valencia_UPV/Templates:footerUPV}}
 
{{:Team:Valencia_UPV/Templates:footerUPV}}

Latest revision as of 15:52, 18 September 2015

Valencia UPV iGEM 2015

Protocols


Here we present you all the procedures we did to develop our project. On this page you can find the general protocols. If preferred, you can go directly to the dialy Notebook, the experiments on Nicotiana or the protoplasts experiments by pressing in the buttons above or below (after protocols). We hope you enjoy reading our incredible journey!


Constructions protocol

2. Ligation in pUPD2:

The ligations have a total volume of 10 µl. All the parts were mixed together in an eppendorf of 0.2ml. The eppendorf was put in the thermocycler with the programs GB or GG, the differences between them are number of cycles. Explain the cycles!

*The cells with the asterisk are the ones that are going to be written down and specified in the lab-book. The others cells are constant unless we indicate it specifically on the lab-book.

DNA; pUPD2
1 µl DNA fragment
1 µl pUPD2
1.2 µl buffer ligase
1.2 µl BSA (10x)
1 µl BsmbI
1 µl T4 ligase
5,6 µl H2O

8. Ligation in α or Ω:

DNA1;pUPD2+DNA2;pUPD2 ; αDNA1; α1+DNA2; α2; Ω
1 µl DNA1; pUPD21 µl DNA1; α1
1 µl DNA2; pUPD21 µl DNA2; α2
1 µl α1 µl Ω
1.2 µl buffer ligase1.2 µl buffer ligase
1.2 µl BSA1.2 µl BSA
1 µl T4 ligase1 µl T4 ligase
1 µl BsaI1 µl BsmbI
4.6 µl H2O4.6 µl H2O

3a. Transformation:

In order to transform the DNA construction the electroporation method was used.

The method followed is common for E. coli and Agrobacterium. The electroporation cuvette was put in ice 10 minutes before inserting the cells.

Frozen cells were taken out of the -80ºC freezer, and they were put immediately into ice.

1-2 µl of the ligation were taken and added carefully to the electrocompetent cells.

60 µl of the mix were taken and put into an electroporation cuvette making sure that there were no bubbles.

The cuvette was dried and put in the electroporator, making sure that it did not do a spark. In that case, the process did not work and must be repeated.

The voltage is 1500V for E. coli and 1440V for Agrobacterium.

Then with 300 µl of medium the electroporated cells were taken and put into an Eppendorf, letting them grow in the shaker.

SOC medium was used for E.Coli and they were put at 37ºC for 1h.

LB medium was used for Agrobacterium and they were grown for 2h at 27ºC.

3b. Petri dish culture:

Depending on the plasmid with which the bacteria was transfected, agar dishes with the specific antibiotic were needed to make the petri dishes cultures.

  • E. coli-pUPD2 plasmids: chloramphenicol.
  • E. coli-Alpha 1 and 2: kanamycin.
  • E. coli-Omega 1 and 2: streptomycin
  • Agrobacterium: rifampicin + the specific one for each construction.

The procedure was made in the laminar flux cabinet. The spread plate method is done with 50-40 µl of the bacteria culture that is in the eppendorf. It was spread with the glass dipstick. After that the plates were put for 16h approximately in 37ºC for E. coli and 32h at 28ºC for Agrobacterium.

4. Liquid culture:

  • For Escherichia coli:

The mix was grown 16h at 37ºC in the shaker.

  • For Agrobacterium tumefaciens:

The mix was grown 32h at 28ºC in the shaker.

5. Minipreps:

In order to do the minipreps -extraction of the plasmids out of E. coli the protocol of the Omega kit (Plasmid DNA Mini Kit I Spin Protocol) was used. The steps to do it are:

1. Centrifuge at 10.000xg for 1minute at room temperature the liquid medium with the growed bacteria.

2. Decant or aspirate and discard the culture media.

3. Add 250 µl SolutionI/RNase A. Vortex or pipet up and down to mix thoroughly. Complete resuspension of cell pellet is vital for obtaining goo yields.

4. Tranfer suspension into a new 1.5mL microcentrifuge tube.

5. Add 250 µl Solutions II. Invert and gently rotate the tube several times to obtain a clear lysiate. A 2-3 minute incubation may be necessary.

6. Add 350 µl Solution III. Inmediately invert several times until a flocculent white precipitate forms.

7. Centrifuge at maximum speed (>13.000xg) for 10 minutes. Acompact white pellet will form. Promptly preceed to the next step.

8. Insert a HiBind DNA Mini Column into a 2 mL Collection tube.

9. Transfer the cleared supernatant from Step 8 CAREFULLY aspirating it into the HiBind DNA Mini Column. Be careful not to disturb the pellet and that mo cellular debris is transferred the the HiBind DNA Mini Column.

10. Centrifuge at maximum speed for 1 minute.

11. Discard the filtrate and reuse the collection tube.

12. Add 500 µl HBC Buffer.

13. Centrifuge at maximum speed for 1 minute.

14. Discard the filtrate and reuse collection tube.

15. Add 700 µl DNA Wash Buffer .

16. Centrifuge at maximum speed for 1 minute.

17. Discard the filtrate and reuse the collection tube.

18. Centrifuge the empty HiBind DNA Mini Column for 2 minutes at maximum speed to dry the column.

19. Transfer the HiBind DNA Mini Column to a clean 1.5 mL microcentrifuge tube.

20. Add 30-100 µl Elution Buffer or sterile deionized water directly to the center of the column membrane.

21. Let sit at room temperature for 1 minute.

22. Centrifuge at maximum speed fot 1 minute.

6a. Digestion:

After doing the miniprep the DNA was obtained. The next components were mixed up in a 200 µl eppendorf. After the mix was done it stayed at 37ºC, 1h.

1 µl of the DNA
1 µl specific buffer
0.5 µl of the specific enzyme
7.5 µl of H2O

1 µl of loading buffer is needed for each 5 µl of the digestion mix, so they were added 2 µl of loadding buffer (6x).

These are the specific enzymes and buffers for each type of plasmid.

PlasmidEnzymeBuffer
pUPD2Not IOrange
Alpha EcoRISpecific
Omega BamHISpecific

The plasmids can also be cut with other enzymes if it is necessary to check the construction.

6b. Gel:

The gel was made with buffer + dilution 1:1000 of ethidium bromide and a proportion of 0.1% of agarose.

The small gels had 40ml of buffer + 0.4 µl of ethidium bromide and 0.4g of agarose.

After waiting 1h to let the gel cool down, the ladders of 100bp and 1kbp are put one on each side of the gel, and the digestions in between the ladders.

The voltage to apply is 120V.

It was written in a table the DNA fragments obtained and the words “ok “ or “no” depending on if the results are correct or not. Example:

DNA1DNA2 C1DNA2 C2DNA4
oknonook

7. Sequence:

To check if the plasmid obtained has the proper construction, a Sanger sequencing was made.

The IMBCP has its own sequencing service.


Agroinfiltration protocol

The agroinfiltration is a process that consist of introducing Agrobacterium tumefaciens into a leaf plant by is underside. Agrobacterium tumefaciens is a bacteria that causes the formation of tumours in some plant species like Nicotiana benthamiana, the one that we are working on. This bacteria carried the plasmid that have the DNA construction we want to test and as it infects the cell plants produce a transitory expression of our DNA piece.

So to start the process of the agroinfiltration first of all we have to grow Agrobacterium in liquid culture two days, then refresh two times this first culture taking 5µl of the previous culture. The refresh cultures are only one day incubating at 28ºC. After this starts the procedure:

1. Centrifuge the Agrobacteriumcultures 10min at 3000rpm.

2. While doing this prepare the agroinfiltration solution. It is made of 10ml of MES 10x (100mM, pH 5.6) + 1ml MgCl2 (1M) + 100µl of acetosyringone solution (200mM) it is composed by 9.8mg of acetosyringone dilute with 250µl of DMSO. Add water up to 100ml.

3. Eliminate the supernatant of the cultures and then add 5ml of the agroinfiltration solution. Resuspend the bacteria and let them grow in dark in the shaker.

4. Measure the OD (optical density). To do this the Agrobacteriumculture is diluted in proportion 1:10 so it is put 900 µl of agroinfiltration solution and 100 µl of bacteria culture and then measure in the spectofotometer. Depending on the OD obtained the culture will be diluted with a quantity that gets the ODs to 0.2 (when infiltrating viral system the OD has to be 0.1).

5. The dilute bacteria is put in eppendorfs and are ready to agroinfiltrate.

Tips to agroinfiltrate:

  • Do the infiltration on the young leafs without rough surface.
  • Put the syringe with the solution that has bacteria in the undarside and gently introduce the liquid making also a bit of presure with the finger in the adaxial surface of the leaf.
  • Change the gloves and the syringe each time you change construction that wants to be agroinfiltrated.
  • Take the plants out in baches to avoid that due to de hot ambient they close their pores.


Luciferase assay protocol

Before start:

This procedure is done with the Promega; kit (Dual-Luciferase Reporter Assay System).

First of all is needed to agroinfiltrate the plant and let them for 2 o three days depending on how the experiment is raised. Normally in this days the plants are in darkness because our pieces to tests activates with different wavelegth of ligths. After two days discs are made, trying to take the maximum agroinfiltrated area without any nerve. The discs are put in the specific plate depending on in which ligth condition they need. The samples are taken during one or two days after the discs were made and inmediately the are put in liquid nitrogen and the storage in the -80ºC fridge.

The steps to follow are:

1. The Passive lysis buffer 1x is prepared. It is used 200µl per disc of leaf. The passive lysis buffer is 5x so diluted them with destilled water, always manipulate in ice.

2. Grind the freeze sample with a machine that shake the eppendorfs that had to have previusly two little metal balls or with plastic maces.

3. Add to the eppendorf 150µl of passive lysis buffer 1x.

4. Mix it with the vortex avoiding that they melt. Do this step in cold the maximum time possible.

5. The samples are centrifuged in cold during 15min at 13200rpm.

6. A dilution 2:3 is made with the extract, to do that put in a new eppendorf 36µl of passive lyssis buffer 1x and 24µl of sample.

7. The opaque plate to use in the luminometer is taken. 40 µl of Luciferase is added in each well.

8. 10 µl of sample is added too. Wait 10min. During this time turn and configurate the luminometer.

9. The luciferase activity is mesured.

10. 40 µl/sample +1extra of Dual Glo (1x) was prepared . The sustrate is at 50x and it is at –20ºC, the buffer to dilute it is in the fridge.

11. After the first masure is done add to the wells 40 µl of Dual Glo, let it 10 min and measure the Renilla.

12. Take the data obtained and analyze it.

Things to keep in mind for the next experiment:

  • The luminimeter (machine to measure the luminescence) has to be ready before start adding the reactants to the samples because it needs 10min to be ready.
  • Set the timer (10min) with the first sample of luciferase and add the reactant to the other samples as quick as possible.


Western blot protocol

DAY 1

PROTEIN EXTRACTION

1. Harvest agroinfiltrated leaves. Grind the harvested material in liquid N2. You can store ground tissue at -80ºC.

2. Weigh around 100 mg of ground tissue in a 1.5 ml tube. Keep sample frozen!

3. Add 3 vol. ice-cold extraction buffer to each sample (300 µl buffer/100 mg tissue).

4. Mix thoroughly by vortexing for a few seconds. Transfer samples to ice. Repeat vortexing a few times (cooling the sample in between) till sample is completely thaw.

5. Centrifuge the extract for 15’, at > 12000xg, 4ºC.

6. Transfer the supernatant to a fresh 1.5 ml tube. Samples should be kept cold at all times, work on ice!

SDS-PAGE

1. Sample Mix Preparation ( for 10 µl final volume, scale up as necessary):

Protein extract1 to 6.5 µl
NuPAGE LDS Sample buffer (x4)2.5 µl
NuPAGE LDS reducing agent (x10)1 µl (use only for reducing conditions)
Ultrapure H2O0 to 5.5 µl

Mix by vortexing. Heat at 72ºC(*) for 10’. Spin briefly to collect everything at the bottom of the tube. Keep samples on ice.

2. Assembling the gel and loading the samples:

  • Prepare 800 ml MES SDS 1x running buffer
20x MES MES SDS running buffer40 ml
Distilled H2O760 ml

Set aside 200 ml of 1x running buffer. Add 500 µl of NuPAGE antioxidant (only for reducing conditions). Mix by inversion.

Take one 10% Bis-Tris NuPAGE gel out of the plastic bag and rinse with distilled H2O. Peel off the white tape at the bottom of the gel.

  • Pull out the comb.
  • Insert the gel in the sure lock gel. The shorter well side of the cassettes facing inwards. Lock the gel tension wedge.
  • Fill the upper buffer chamber with the 200 ml of 1x running buffer with antioxidant. Fill the lower buffer chamber with remaining 600 ml of 1x running buffer.

To load the samples: insert the tip into the well and slowly pipet the sample into it.

3. Running the gel:

Running conditions: 200 V, 40 min

PROTEIN TRANSFER

1. Preparing for transfer:

  • Cut 1 piece of Hybond-P PVDF membrane and 2 pieces of whatman paper of the same size of the gel (8 x 7 cm).
  • Prepare 500 ml of Transfer buffer:
Transfer buffer (x20)25 ml
Methanol50 ml
H2O375 ml
  • Soak 5 blotting pads in transfer buffer. Remove air bubbles by squeezing the blotting pads while they are submerged in buffer (this step is important because air bubbles may block the transfer of proteins).
  • Pre-wet the PVDF membrane for 10’’ in methanol. Wash in distilled water for 5’. Equilibrate in transfer buffer for at least 10’ before blotting. (Everything is done without agitation).
  • Wathman paper: soak briefly in transfer buffer immediately before using.
  • Lay the gel on the bench allowing one edge to hang 1 cm over the side. Insert the gel-knife into the gap between the gel plates and push up and down gently to break the bonds that hold the plates together. When all the bonds are broken separate the two plates and throw away the one without the gel.
  • Cut the wells with the gel-knife.
  • Place a piece of pre-soaked whatman paper on top of the gel. Keep the filter paper saturated with transfer buffer and remove all trapped air bubbles by gently rolling a glass pipette over the surface.
  • Turn the plate over so that the gel and whatman paper are facing downwards over your hand or over a piece of parafilm on the bench.
  • Remove the gel from the plate: use the gel knife to carefully loosen the bottom of the gel so that it peels away from the plate.

3. Transferring the gel:

  • Wet the surface of the gel with transfer buffer and place a pre-soaked membrane on top of the gel. Make a small cut on one corner of the membrane to mark the orientation. Remove air bubbles by rolling a glass pipette over the membrane surface.
  • Place a pre-soaked whatman paper on top of the membrane. Remove air bubbles.
  • Place 2 soaked blotting pads into the Xcell II Blot Module. Place the paper-gel-membrane-paper sandwich on top of the blotting pads.
  • Add another 3 pre-soaked blotting pad on top of the sandwich.
  • Place the blot module in the buffer chamber. Lock the gel tension wedge into place.
  • Fill the blot module with transfer buffer until the gel-membrane sandwich is covered in buffer (do not fill all the way to the top as this generates extra conductivity and heat).
  • Fill the outer buffer chamber with ˜ 650 ml deionized water.
  • Running conditions: 30V for 2h

BLOCKING THE MEMBRANE

1. Prepare 50 ml of blocking solution.

2% ECL Advance Blocking Agent in PBS-T (pH 7.5):

  • 1 g blocking agent
  • 50 ml PBS (1x)
  • 50 µl Tween-20

2. Take the membrane out of the blotting module and transfer it to the blocking solution (protein side up, work always this way from now on). Leave o/n at 4ºC.

DAY 2

DETECTION

1. Prepare 2 L of wash buffer (PBS-0.1% Tween (pH 7.5))

  • 200 ml PBS 5x (pH 7.5)
  • 800 ml distilled H2O
  • 1 ml Tween 20

3. Prepare 10 ml of antibody diluent (2% ECL Advance blocking agent in PBS-0.1%Tween) for each antibody you are going to use.

4. For 6x His-tag detection: dilute the Anti-His6 mouse monoclonal antibody 1:2000 in 10 ml of antibody diluent (5 µl antibody in 10 ml antibody diluent). Incubate for 1h at RT on a shaker.

For IgA detection: dilute the Anti-IgaH antibody 1:20000 in 10 ml of antibody diluent (0.5 µl antibody in 10 ml antibody diluent). Incubate for 1h at RT on a shaker. This antibody is already conjugated to HRP and does not need a secondary antibody for detection; go directly to step 8 after the 1 incubation.

5. Discard the antibody solution and wash the membrane with wash buffer:

  • 2 x brief wash
  • 1 x 15’ wash (RT, shaker)
  • 3 x 5’ wash (RT, shaker)

7. Incubate the membrane with the secondary antibody for 1h at RT on a shaker.

8. Repeat step 5.

9. Take the detection reagents from the fridge and allow to equilibrate to RT before opening.

10. Mix detection solutions ECL Plus A and B in a ratio 40:1.

975 µl Sol. A + 25 µl Sol. B (enough for 1 membrane)

11. Drain the excess wash buffer from the membrane by holding the membrane gently with forceps and touching the edge against a tissue. Place the membrane protein side up on an acetate sheet. Pipette the mixed detection reagent on to the membrane.

12. Cover the membrane with another acetate sheet and gently smooth out any air bubbles, but do not apply pressure over the membrane. Dry any extra liquid with tissue.

13. Place a piece of filter paper on a X-ray film cassette (fix with tape). Drain excess of detection solution with a tissue and place the wrapped blots on top of the paper (fix with tape). Close the cassette and take to the dark room together with the autoradiography films and timer.

14. Switch on the film processor (front panel, lower right corner). Check that the temperate selector on top of the switch on button is on position 2. Turn off the light and with the red light on open the cassette and place a sheet of autoradiography film on top of the membrane (bend the lower right corner to mark the orientation). Close the cassette and expose the film for 1’. To develop the film place it on the rear feeding tray (shorter side of the film opposite to the bent corner against the feeding area to minimize the possibility that the film gets stack in the processor) and press the button next to it to start the feeding. Adjust exposure time as necessary.


Protoplasts protocol

We make protoplasts in to different ways. At first we make protoplasts with a normal Nicotiana leaf and then we try to transform the alive protoplasts. After the infiltration at vacuum we can not obtain protoplasts, we change the method. First we agroinfiltrate leafs with the desired construction, we let them 3 hours in dark and then make the protoplasts. The general steps for every preparation is:

1. Prepare the enzymatic solution. It has 5mL of Mannitol (0.8M) + 200 µl KCl (1M) + 400 µl MES (0.5M, pH 5.7) + 150ng cellulase + 40mg Macerozyme + 4.2mL H2O. Total volume for one preparation. Put it 10min at 55ºC.

2. Take out the solution and let it cool down.

3. Add 100 µl CaCl2 + 4 µl Beta-Mercaptoethanol + 100 µl BSA (10%).

4. Put the enzymatic solution in a petri dish and cut the leaf in very thin strips. Put quickly the cut leafs so they do not dry.

5. In darkness, do the vacuum for 30min to the petri dish with the enzymatic solution and the cut leaf. Let the leaf 3h in darkness, no agitation.

6. Swirl the plate gently. Using a 5ml pipette tip (cut off the tip first) take the liquid and filter them with a 35-75 µm nylon mesh into a 13 mL tube. To clean the mesh add before a little bit of W5 solution. Also put the leaf stripes first and then throw the enzymatic solution.

7. Add 5ml of W5 solution.

8. Centrifuge at 100xg for 1min without brake.

9. Eliminate the supernatant. Leave a small volume so that the protoplasts do not dry.

10. Add WI solution till reach the desired concentration (107 protoplasts per gram).

11. Finally put into the plate wells 250 µl of W5 and 100 µl of protoplasts solution.

Solutions:

W5: NaCl (154mM) + CaCl2 (125mM) + KCl (5mM) + MES (2mM) + 17.8ml H20. Total volume of 50ml.

WI: MES (4mM)(pH 5.7) + NaCl (154mM) + CaCl2 (20mM).


Protoplast luciferase assay protocol

Before doing the essay the protoplasts are in a plate in the light conditions needed.

1. Take the solution with protoplasts and put it in an Eppendorf.

2. Centrifugue at 100xg for 1min.

3. Eliminate the maximum supernatant letting the protoplasts.

4. Put into liquid nitrogen and then keep it in the -80ºC fridge.

Start the essay:

5. Add to the freeze sample 100µl of Passive lysis buffer (1x).

6. Vortex the samples.

7. Let it 5min in ice.

8. Centrifuge it at 1000xg for 2min.

9. Eliminate the supernatant.

10. Take an opaque plate to measure the luciferase and put in each well 40 µl of Luciferase and 10 µl of sample, wait 10min and then measure.

11. Add to the wells 40 µl of Dual Glo (1x) and measure the renilla luminiscence.