|
|
(52 intermediate revisions by 5 users not shown) |
Line 1: |
Line 1: |
− | {{:Team:ZJU-China/template/head}} | + | {{:Team:ZJU-China/template/head}} |
| <html> | | <html> |
− | <head> | + | <head> |
− | | + | |
− | <link rel="stylesheet" type="text/css" href="https://2015.igem.org/Team:ZJU-China/css/ZJU-bootstrap?action=raw&ctype=text/css" /> | + | <link rel="stylesheet" type="text/css" href="https://2015.igem.org/Team:ZJU-China/css/ZJU-bootstrap?action=raw&ctype=text/css" /> |
− | <link rel="stylesheet" type="text/css" href="https://2015.igem.org/Team:ZJU-China/css/ZJU-stylesheet?action=raw&ctype=text/css" />、 | + | <link rel="stylesheet" type="text/css" href="https://2015.igem.org/Team:ZJU-China/css/ZJU-stylesheet?action=raw&ctype=text/css" /> |
− | <script type="text/javascript" src="https://2015.igem.org/Team:ZJU-China/Template/label?action=raw&ctype=text/javascript"></script> | + | <script type="text/javascript" src="https://2015.igem.org/Team:ZJU-China/Template/label?action=raw&ctype=text/javascript"> |
− | <link rel="stylesheet" type="text/css" href="https://2015.igem.org/Team:ZJU-China/css/label/label?action=raw&ctype=text/css" /> | + | </script> |
− | <script type="text/javascript" src="https://2015.igem.org/Team:ZJU-China/js/globe/ZJU-ajax.js?action=raw&ctype=text/javascript"></script> | + | <link rel="stylesheet" type="text/css" href="https://2015.igem.org/Team:ZJU-China/css/label/label?action=raw&ctype=text/css" /> |
− | | + | <!-- 点击 显示 --> |
| + | <script language="javaScript"> |
| + | function showHideText1() |
| + | { |
| + | if (jQuery('#show1').css('display')=="none"){ |
| + | jQuery('#show1').css('display','inline'); |
| + | }else{ |
| + | jQuery('#show1').css('display','none'); |
| + | }} |
| + | function showHideText2() |
| + | { |
| + | if (jQuery('#show2').css('display')=="none"){ |
| + | jQuery('#show2').css('display','inline'); |
| + | }else{ |
| + | jQuery('#show2').css('display','none'); |
| + | } |
| + | } |
| + | </script> |
| </head> | | </head> |
| + | <body id="wrapper"> |
| | | |
− | | + | <div id="page-content-wrapper"> |
− | | + | <article> |
− | <body id = "wrapper">
| + | <h2 style="color:green;font-size:50px"> Toxin Manufacture </h2> |
− | | + | <h2 id="pos1"> Introduction </h2> |
− | <div id="page-content-wrapper"> | + | <p class="p1"> Biological pesticides can be divided into two types: small molecular compounds and biological macromolecules. On the one hand, small compounds are more prone to be absorbed by termites while more costly to produce. On the other hand, macromolecules are easier and cheaper to produce whereas sometimes not as effective as small molecules. Hence, to kill termites more efficiently and effectively, we choose both--We plan to overexpress avermectin in its host <i> Streptomyces avermitilis </i> and express four kinds of toxic protein in <i> Escherichia coli</i> BL21 (DE3) . Then we embed the engineered <i> S. avermitilis </i> and <i> E.coli </i> with CNC carrier and feed termites with the CNC imbedded bacteria. For more information about CNC, please go to <a href="https://2015.igem.org/Team:ZJU-China/Design/CNC" title="about CNC"> the main page of CNCs </a> . </p> |
− | | + | <h2 id="pos2"> Avermectin manufacture </h2> |
− | <article> | + | <p class="p1"> Judging that many toxic small compounds are harmful to human being, we choose avermectin, which is highly specific to insects and does little harm to human. For one thing, being a secondary metabolite produced by <i> Streptomyces avermitilis </i> , avermectin is encoded by an 80kb gene cluster, making it difficult to be engineered in other standardized strains, for instance, <i> Escherichia coli </i>. For another, the avermectin yield in wild type <i> S. avermitilis </i> strain is comparatively low. Nevertheless, we plan to engineer the wild <i> S. avermitilis </i> to improve the yield of avermectin, embed the engineered strain with CNCs and feed termites with CNC embedded <i> S. avermitilis </i> . </p> |
− | | + | <div id="show1"> |
− | <h2 style="color:green;font-size:50px">Toxin manufacture</h2> | + | <h3> AVERMECTIN: EFFECTIVE AND BROAD-SPECTRUM PESTICIDE </h3> |
− | | + | <h3> <p class="p1"> For years, people always adopt the organochlorine pesticides such as chlordane and mirex to achieve prevention and control of termites, but these organochlorine pesticides will produce pollution and potential harm to the environment. Avermectin is a new type of highly efficient biological pesticide, which has good control effect to termites and other pests, and no pollution to the environment. </p> |
− | | + | <div class="row"> |
− | | + | <div class="col-md-12" style="text-align:center"> |
− |
| + | <img src="https://static.igem.org/mediawiki/parts/1/10/Avermectin.png" class="img-center" style="width:60%;" /> |
− | <h2 id="pos1">Introduction</h2> | + | <div class="cpleft"> |
− | <p class="p1"> | + | <p class="kuvateksti"> Figure 1 Abstract process of self-assembly </p> |
− | Biological pesticides can be divided into two types: small compounds and biological macromolecules. On one hand, small compounds are more prone to be absorbed by termites while more costly to produce. On the other hand, macromolecules are easier and cheaper to produce whereas sometimes not as effective as small molecules. Hence, to kill termites more efficiently and effectively, we choose both——insecticidal small molecule avermectin and several toxic proteins. We plan to overexpress avermectin in its host <i>Streptomyces avermitilis</i> and express three kinds of toxic protein in <i>Escherichia coli BL21(DE3)</i>. Then we embed the engineered <i>S. avermitilis</i> and <i>E.coli</i> with CNC carrier and fed termites with the CNC embedded bacteria. For more information about CNC, please go to(CNC的主页面)
| + | </div> |
− | </p>
| + | </div> |
− | | + | </div> </h3> |
− | <h2 id='pos2'>Avermectin manufacture</h2>
| + | |
− | <p class="p1">
| + | <h3> HOST OF AVERMECTIN - <i> Streptomyces avermitilis </i> </h3> |
− | Judging that many toxic small compounds are harmful to human being, we choose avermectin, which is highly specific to insect and does no harm to human. For one thing, being a secondary metabolite produced by <i>Streptomyces avermitilis</i>, avermectin is regulated by an 80kb gene cluster(1), making it difficult to express in other standardized strains, for instance, <i>Escherichia coli</i>. For another, the avermectin yield in wild type<i> S. avermitilis</i> strain is comparatively low(1). Nevertheless, we plan to engineer the wild <i>S. avermitilis</i> to improve the yield of avermectin, embed the engineered strain with CNC and feed termites with CNC embedded <i>S. avermitilis</i>.
| + | <p class="p1"> <i> Streptomyces avermitilis </i> , a soil-dwelling gram-positive microorganism, is a rich source of numerous secondary metabolites. It's a kind of Actinomycetes with staghorn-like hypha (Figure 2). Now it has been industrialized to produce the commercially important antiparasitic agent avermectin(2). Early in 2003, the complete genome of <i> Streptomyces avermitilis </i> had been sequenced(3). </p> |
− | </p>
| + | <div class="row"> |
− | <h3>AVERMECTIN: EFFECTIVE AND BROAD-SPECTRUM PESTICIDE<h3>
| + | <div class="col-md-12" style="text-align:center"> |
− | <p class="p1">
| + | <img src="https://static.igem.org/mediawiki/parts/c/ce/Streptomyces_avermitilis_.png" class="img-center" style="width:60%;" /> |
− | For years, people always adopt the organochlorine pesticides such as chlordane and mirex to achieve prevention and control of termites, but these organochlorine pesticides will produce pollution and potential harm to the environment. Avermectin is a new type of high efficient biological pesticide, which has good control effect to the termites and other pests, and no pollution to the environment(1). | + | <div class="cpleft"> |
− | </p>
| + | <p class="kuvateksti"> Figure 2 The picture of <i> Streptomyces avermitilis </i> under scanning electron microscope. </p> |
− | <h3>HOST OF AVERMECTIN——<i>Streptomyces avermitilis</i></h3>
| + | </div> |
− |
| + | </div> |
− |
| + | </div> |
− | <p class="p1">
| + | <p class="p1"> In past years, scientists had been trying to transform gene into <i> S.avermitilis. </i> Until 1989, gene transformation into <i> S.avermitilis </i> was achieved through <a href="#CONJUGATION" title="more about conjugation"> conjugation </a> between <i> E.coli strains </i> (eg, <i> s17-1 </i> )and <i> S.avermitilis </i> <i>(4)</i>. However, the efficiency was limited by the methyl-specific restriction system in <i> S.avermitilisi </i> , which shows strong restriction to gene methylated in normal <i> E.coli</i> strains <i>(5)</i>. Eventually, high efficiency conjugation was achieved till the introduction of methylase-negative donor strain <i> E.coli </i> <a href="#ET12567" title="about ET12567"> ET12567 </a> Now conjugation and strain ET12567 has been ubiquitously adopted in the gene transformation of <i> S.avermitilis. </i> </p> |
− | <i>Streptomyces avermitilis</i>, a soil-dwelling gram-positive microorganism, is a rich source of numerous secondary metabolites. It’s a kind of Actinomycetes with staghorn-like hypha (figure 2). Now it has been industrialized to produce the commercially important antiparasitic agent avermectin(2). Early in 2003, the complete genome of <i>Streptomyces avermitilis</i> had been sequenced(3). | + | <h3> PROBLEMS AND SOLUTIONS </h3> |
− | </p>
| + | <p class="p1"> Environmentally friendly though avermectin is, the yield of avermectin in wild <i> S. avermitilis </i> doesn't fulfill our needs. Many efforts have been paid to increase its yield, including developing genome-minimized hosts, engineering the metabolic network<i>(2)</i>, etc. In our project, we plan to overexpress three genes, <i> frr, orfX, metK </i> in <i> S. avermitilis </i> to improve the yield of avermectin. </p> |
− | | + | <h3> CIRCUITS DESIGN </h3> |
− | <p class="p1">
| + | <p class="p1"> We have constructed three circuits to improve the yield of avermectin(Figure 3). PROMOTER: ermEp We chose ermEp, a strong constitutive promoter, to overexpress the three genes in <i> S.avermitilis </i> . It should be noticed that ermEp can only be expressed in <i> S.avermitilis </i> strains instead of <i> Escherichia coli </i> or any other chassis. </p> |
− | In past years, scientists had been trying to transform gene into <i>S.avermitilis.</i> Until 1989, gene transformation in <i>S.avermitilis </i>was achieved through conjugation(超链接到下面的conjugation) between <i>E.coli strains</i>(eg, <i>s17-1</i>)and <i>S.avermitilis</i>(4)<i>¬. </i>However, the efficiency was limited by the methyl-specific restriction system in <i>S.avermitilisi</i>, which show strong restriction to gene methylated in normal <i>E.coli strains</i>(5). Eventually, high efficiency conjugation was achieved till the introduction of methylase-negative donor strain<i> E.coli</i> <i>ET12567</i> (超链接到下面的ET12567介绍) Now conjugation and strain <i>ET12567</i> has been ubiquitously adopted in the gene transformation of <i>S.avermitilis.</i>
| + | <div class="row"> |
− | </p>
| + | <div class="col-md-12" style="text-align:center"> |
− |
| + | <img src="https://static.igem.org/mediawiki/parts/6/6d/Avermectin_circuits.png" class="img-center" style="width:60%;" /> |
− | <h3>PROBLEMS AND SOLUTIONS</h3>
| + | <div class="cpleft"> |
− | <p class="p1">
| + | <p class="kuvateksti"> Figure 3 The circuits constructed for yield improvement of avermectin in <i> S.avermitilis </i> . </p> |
− | Environmentally friendly though avermectin is, the yield of avermectin in wild<i> S. avermitilis</i> doesn’t fulfill our needs. Many efforts have been paid to increase its yield, including developing genome-minimized hosts, engineering the metabolic network(2), etc. In our project, we plan to overexpress three genes, <i>frr, orfX, metK</i> in <i>S. avermitilis</i> to improve the yield of avermectin.
| + | </div> |
− | | + | </div> |
− | | + | </div> |
− | </p>
| + | <h3> BACKBONE: PL96 and PL97 </h3> |
− | <h3>CIRCUITS DESIGN</h3>
| + | <p class="p1"> PL96 and PL97 are two high-copy vectors we used to overexpress our target genes. We get these vectors through commercial purchase. These vectors have pUC18 and pIJ101 replication origins for high-copy plasmid number in <i> Escherichia coli </i> and <i> S.avermitilis </i> , respectively, and the oriT (RK2) allows the efficient and convenient plasmid transfer from <i> E.coli </i> to <i> S.avermitilis </i> (6). </p> |
− | <p class="p1">
| + | <div class="row"> |
− | We have constructed three circuits to improve the yield of avermectin(figure 3).
| + | <div class="col-md-12" style="text-align:center"> |
− | PROMOTER: ermEp
| + | <img src="https://static.igem.org/mediawiki/parts/5/5c/PL96_map.png" class="img-center" style="width:80%;" /> |
− | We chose ermEp, a strong constitutive promoter, to overexpress the three genes in <i>S.avermitilis</i>. It should be noticed that ermEp can only be expressed in<i> S.avermitilis</i> strains instead of <i>Escherichia coli</i> or any other chassis.
| + | <div class="cpleft"> |
− | </p>
| + | <p class="kuvateksti"> Figure 4 the map of plasmid backbone PL96. </p> |
− | <h3>BACKBONE: PL96 and PL97</h3>
| + | </div> |
− | <p class="p1">
| + | </div> |
− | ` PL96 and PL97 are two high-copy vectors we used to overexpress our target genes. We get these vectors through commercial purchase. These vectors have pUC18 and pIJ101 replication origins for high-copy plasmid number in <i>Escherichia coli</i> and <i>S.avermitilis</i>, respectively, and the oriT (RK2) allows the efficient and convenient plasmid transfer from <i>E.coli</i> to <i>S.avermitilis</i>(6).
| + | <div class="col-md-12" style="text-align:center"> |
− | </p>
| + | <img src="https://static.igem.org/mediawiki/parts/f/fd/PL97_map.png" class="img-center" style="width:80%;" /> |
− | <p class="p1">To be noticed, we use special antibiotic aparamycin to choose final transformants. And there are aparamycin resistent gene <i>acc</i> in the backbone. </p>
| + | <div class="cpleft"> |
− |
| + | <p class="kuvateksti"> Figure 5 The map of plasmid backbone PL97. </p> |
− | <h3>EXPRESSION:</h3>
| + | </div> |
− | <p class="p1">In order to<i> </i>construct and express the three gene in <i>S.avermitilis</i>, we have adopted two hosts, <i>E.coli</i> <i>DH5α</i>and <i>E.coli</i> <i>ET12567</i>. Then the target vectors are transferred from <i>E.coli</i> <i>ET12567 </i>to <i>S.avermitilis</i> by conjugation.<p class="p1">
| + | </div> |
− |
| + | </div> |
− | <h3>PRIMARY HOST: <i>E.coli</i> <i>DH5α</i></h3>
| + | <p class="p1"> To be noticed, we use special antibiotic aparamycin to choose final transformants. And there are aparamycin resistent gene <i> acc </i> in the backbone. </p> |
− | <p class="p1"> As usual, we use <i>E.coli</i> <i>DH5α</i> to get plenty of recombinants in high quality and quantity. </p>
| + | <h3> EXPRESSION: </h3> |
− |
| + | <p class="p1"> In order to <i> </i> construct and express the three gene in <i> S.avermitilis </i> , we have adopted two hosts, <i> E.coli </i> DH5α and <i> E.coli </i> ET12567 . Then the target vectors are transferred from <i> E.coli </i> ET12567 to <i> S.avermitilis </i> by conjugation. </p> |
− | <h3>INTERMEDIA HOST: <i>E.coli</i> <i>ET12567</i></h3>
| + | <p class="p1"> </p> |
− | <p class="p1"><i>E.coli</i> <i>ET12567 </i>is a methylase-negative donor strain first used by MacNeil in 1988(7). And we use <i>E.coli</i> <i>ET12567</i> to demethylation the recombinants to better suit the methyl-specific restriction system in <i>S.avermitilisi.</i>(超链接到上面的介绍页面)
| + | <h3> PRIMARY HOST: <i> E.coli </i> DH5α </h3> |
− |
| + | <p class="p1" id="ET12567"> As usual, we use <i> E.coli </i> DH5α to get plenty of recombinants in high quality and quantity. </p> |
− |
| + | <h3> INTERMEDIA HOST: <i> E.coli </i> ET12567 </h3> |
− | <h3>CONJUGATION:</h3>
| + | <p class="p1"> , <i> E.coli </i> ET12567 is a methylase-negative donor strain first used by MacNeil in 1988<i>(7)</i>. And we use <i> E.coli </i> ET12567 to demethylation the recombinants to better suit the methyl-specific restriction system in <a href="#avermitilisi" title="more about S.avermitilisi"> <i> S.avermitilisi. </i> </a> </p> |
− | <p class="p1">Bacterial conjugation is the transfer of genetic material between bacterial cells by direct cell-to-cell contact or by a bridge-like connection between two cells. During conjugation the donor cell provides a conjugative or mobilizable genetic element that is most often a plasmid or transposon(8). In laboratories, successful transfers have been reported from bacteria to yeast(9), plants(10), mammalian cells(11), etc.
| + | <h3 id="CONJUGATION"> CONJUGATION: </h3> |
− | In our project, we use the conjugation between <i>E.coli</i> <i>ET12567</i> and <i>S.avermitilisi</i> to overexpress three target genes. | + | <p class="p1"> Bacterial conjugation is the transfer of genetic material between bacterial cells by direct cell-to-cell contact or by a bridge-like connection between two cells. During conjugation the donor cell provides a conjugative or mobilizable genetic element that is most often a plasmid or transposon(8). In laboratories, successful transfers have been reported from bacteria to yeast(9), plants(10), mammalian cells(11), etc. In our project, we use the conjugation between <i> E.coli </i> ET12567 and <i> S.avermitilisi </i> to overexpress three target genes. </p> |
− | </p> | + | <div class="row"> |
− | <p class="p1">To see the results of expression and toxic experiment on termites, please go to (results页面) </p>
| + | <div class="col-md-12" style="text-align:center"> |
− | | + | <img src="https://static.igem.org/mediawiki/parts/4/42/Conjugation_LY.png" class="img-center" style="width:60%;" /> |
− | <h3>CIRCUITS CONSTRUCTION</h3>
| + | <div class="cpleft"> |
− | <p class="p1"> STEP ONE: PCR</p>
| + | </div> |
− | <p class="p1">We amplify the target gene from the genome of <i>S.avermitilisi</i> by PCR. The primer and PCR program can be seen in our biobrick pages(超链接到biobrick).</p>
| + | </div> |
− | <p class="p1">STEP TWO: TA CLONING</p>
| + | </div> |
− | <p class="p1">We use TA cloning to efficiently clone the PCR products. In TA cloning, we use pMD19-T Vector, a vector transformed from pUC19 vector, to improve the efficiency of digestion and connection. As a result, we get three recombinant vectors of target genes and pMD19-T.</p>
| + | <p class="p1"> To see the results of expression and toxic experiment on termites, please go to <a href="https://2015.igem.org/Team:ZJU-China/Results" title="Results"> results page </a> . </p> |
− | <p class="p1">STEP THREE: DIGESTION AND CONNECTION</p>
| + | <h3 id="avermitilisi"> CIRCUITS CONSTRUCTION </h3> |
− | <p class="p1">We digest the three recombinants and backbone PL96 with restriction enzymes NdeI, XbaI, then connect the fragments and backbone. Similarly, we use NdeI, HindⅢ to digest the three recombinants and backbone PL97 and connect the corresponding product. Then we get the target plasmids.</p>
| + | <p class="p1"> STEP ONE: PCR </p> |
− | <p class="p1">For more detailed protocols, please go to(超链接到protocol). </p>
| + | <p class="p1"> We amplify the target gene from the genome of <i> S.avermitilisi </i> by PCR. The primer and PCR program can be seen in our <a href="#biobrick" title="more about biobrick"> biobrick pages </a> . </p> |
− | <h2 id="pos2">Toxic protein manufacture</h2>
| + | <br /> |
− | <p class="p1">
| + | <p class="p1"> STEP TWO: TA CLONING </p> |
− | Cellulose has specific structure feature, based on which we successfully achieve self-assembly between CNCs and bacteria in aqueous solution driven by multivalent interactions especially the multiple hydrogen bonds. This page will discuss the main theories and methods of CNC carriers.
| + | <p class="p1"> We use TA cloning to efficiently clone the PCR products. In TA cloning, we use pMD19-T Vector, a vector transformed from pUC19 vector, to improve the efficiency of digestion and connection. As a result, we get three recombinant vectors of target genes and pMD19-T. </p> |
− | </p>
| + | <br /> |
− | <h3>Structure of cellulose</h3>
| + | <p class="p1"> STEP THREE: DIGESTION AND CONNECTION </p> |
− | <p class="p1">
| + | <p class="p1"> We digest the three recombinants and backbone PL96 with restriction enzymes NdeI, XbaI, then connect the fragments and backbone. Similarly, we use NdeI, Hind III to digest the three recombinants and backbone PL97 and connect the corresponding product. Then we get the target plasmids. </p> |
− | In order to kill the termites, we have chosen four types of insecticidal toxic proteins, respectively Tc protein tcdA1, tcdB1, bt-like Plu0840 and enterotoxin-like Plu1537, from <i>Photorhabdus luminescens TT01, </i>a bacterium of native toxin storehouse. Then we cloned these genes from the genome of <i>TT01</i>, constructed corresponding vectors, successfully expressed these proteins in <i>Escherichia coli BL21(DE3) </i>and fed the termites with the raw engineered BL21 and that embedded with CNC. For more information about CNC, please go to(CNC的主页面)
| + | <div class="row"> |
− | </p>
| + | <div class="col-md-6" style="text-align:center"> |
− |
| + | <img src="https://static.igem.org/mediawiki/parts/3/3f/PL96_color.png" class="img-center" style="width:80%;" /> |
− | <h3>HOST OF TOXIN -- <i>Photorhabdus luminescens</i></h3>
| + | <div class="cpleft"> |
− | <p class="p1"><i>Photorhabdus luminescens</i>, one kind of gram-negative bacteria, is capable of producing and releasing a variety of insecticidal and bactericidal toxins. Living in symbiosis with nematodes, “the bacteria are released and start to produce toxins that eventually kill the insect after insect larvae are invaded by nematodes, thereby generating a food resource for bacteria and nematodes”(12).</p>
| + | <p class="kuvateksti"> Figure 7 the sketch map of PL96 plasmid construction. </p> |
− | <p class="p1">
| + | </div> |
− | The whole genome of strain TT01, which has been sequenced in 2003, is predicted to encode 4839 kinds of protein(12). And many of them are toxic proteins, most of which remain functionally unclear. Although they are toxic to insects and many other bacteria, <i>Photorhabdus luminescens</i> belongs to Risk Group 1 according to DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen) and has no toxic effect on human being at all. “More than 50 years of field application of nematodes for controlling insect pests also showed that EN and their symbiotic bacteria (<i>Photorhabdus luminescens</i>) are safe to human” and “EN-based bio-pesticides were exempted from registration in many countries, including USA and all European countries”(13).
| + | </div> |
− | </p>
| + | <div class="col-md-6" style="text-align:center"> |
− | <h3>TOXIN PROTEIN IN <i>P. luminescens TT01</i></h3>
| + | <img src="https://static.igem.org/mediawiki/parts/4/43/97_color.png" class="img-center" style="width:80%;" /> |
− | <p class="p1">
| + | <div class="cpleft"> |
− | Numerous toxins as there are in the genome of <i>P. luminescens TT01</i>, many of them have never been studied. Moreover, many small-molecule toxins are regulated by complex gene cluster, which makes it difficult to express in other standardized hosts, for instance <i>Escherichia coli. </i>Hence, on account of cost and safety, we chose four types of single-gene regulated toxic protein, tcdA1, tcdB1, Plu0840 and Plu1537, instead of small molecules because the former is easier to manipulate and less risky to the environment. </p> | + | <p class="kuvateksti"> Figure 8 the sketch map of PL97 plasmid construction. </p> |
− | <h3>tcdA1: PORE FORMING PROTEIN of Tc TOXIN FAMILY</h3> | + | </div> |
− | <p class="p1">The most remarkable toxin family till now is the Tc family, which are widely distributed among different gram-negative and gram-positive bacteria. </p> | + | </div> |
− | <p class="p1">Tcs are composed of TcA, TcB, and TcC. TcA is supposed to perforate the membrane by forming channel outside-in and translocating the toxic enzymes into the host. Meanwhile the TcB and TcC cooperate with a syringe-like mechanism during membrane insertion(14).</p> | + | </div> |
− | <p class="p1">In a 2008 study, researchers expressed tcdA1 and tcdB1 in <i><i>Enterobacter cloacae </i> </i>and fed the termites with <i>E. cloacae</i> to control termites(15). Inspired by their experiment, we chose to express tcdA1 (Uniprot: Q7N7Y9_PHOLL) and tcdB1(Uniprot: Q7N7Z0_PHOLL) to kill termites. For more details, please go to parts 的网页链接</p> | + | <p class="p1"> For more detailed protocols, please go to <a href="#protocol" title="more about protocol"> protocol </a> . </p> |
− | <h3>Plu1537: Bt HOMOLOGOUS TOXIC PROTEIN</h3> | + | </div> |
− | | + | <h2 id="pos3"> Toxic protein manufacture </h2> |
− | <p class="p1">The exact function of Plu1537 is still unclear, but a research in 2009 indicated that Plu1537 “had insecticidal activity against Galleria larvae”(16). </p> | + | <p class="p1"> In order to kill the termites, we have chosen four types of insecticidal toxic proteins, respectively Tc protein tcdA1, tcdB1, bt-like Plu0840 and enterotoxin-like Plu1537, from <i> Photorhabdus luminescens</i> TT01, a bacterium of native toxin storehouse. Then we clone these genes from the genome of TT01 , construct corresponding vectors, successfully express these proteins in <i> Escherichia coli</i> BL21 (DE3) and feed the termites with the raw engineered BL21 embedded with CNC. For more information about CNCs, please go to <a href="https://2015.igem.org/Team:ZJU-China/Design/CNC" title="about CNC">the main page of CNCs</a> </p> |
− | <p class="p1">Judging that the Plu1537 protein has 30% predicted amino acid sequence similarity to a 13.6 kDa insecticidal crystal protein cry34Ab1(figure 12) in<i> Bacillus thuringiensis </i>(Uniprot: Q939T0_BACTU), which belongs to Bt crystal protein family, it may have similar toxic effect with cry34Ab1 Bt protein.</p> | + | <div id="show2"> |
− | <p class="p1">Bt protein may be the most well-known toxic protein till now. It is widely used in transgene plants to kill the larvae of worm. It also “interacts with membranes to form pores”(17). And there are abundant evidences to ensure the safety of Bt protein(更详细?). </p> | + | <h3> HOST OF TOXIN -- <i> Photorhabdus luminescens </i> </h3> |
− | <p class="p1">We have successfully cloned the<i> plu1537</i> gene and expressed the Plu1537 toxin protein in<i> E.coli</i> <i>BL21(DE3)</i>, for more details, please go to </p> | + | <p class="p1"> <i> Photorhabdus luminescens </i> , one kind of gram-negative bacteria, is capable of producing and releasing a variety of insecticidal and bactericidal toxins. Living in symbiosis with nematodes, the bacteria are released and start to produce toxins that eventually kill the insect after insect larvae are invaded by nematodes, thereby generating a food resource for bacteria and nematodes (12). </p> |
− | | + | <div class="row"> |
− | <h3>Plu0840: ENTEROTOXIN Ast HOMOLOGOUS PROTEIN</h3> | + | <div class="col-md-12" style="text-align:center"> |
− | <p class="p1">The exact function of Plu0840 is also unclear. A 2007 study confirmed that Plu0840 had weak oral toxicity against two kinds of moth (<i>S. litura and S. exigua</i>)(13). </p> | + | <img src="https://static.igem.org/mediawiki/parts/e/e2/TT01_2.gif" class="img-center" style="width:20%;" /> |
− | <p class="p1">Sequence analysis showed that the plu0840 in the P. luminescens TT01 genome has 55% sequence identity with an enterotoxin Ast from Aeromonas hydrophila, therefore may play a similar role. (see figure 13)</p> | + | <div class="cpleft"> |
− | <p class="p1">In 2001, researchers studied the function of enterotoxin Ast from Aeromonas hydrophila, concluded that it played an important role in A. hydrophila-induced gastroenteritis in a mouse model(18). </p> | + | <p class="kuvateksti"> Figure 9 Caterpillars infected with nematodes carrying symbiotic Photorhabdus luminescens2. Copyright 2003, Nature Publishing Group </p> |
− | <p class="p1"> We have successfully cloned the <i>plu0840</i> gene and expressed he Plu0840 toxin protein in<i> E.coli</i> <i>BL21(DE3)</i>, for more details, please go to</p> | + | </div> |
− | <h3>CIRCUITS DESIGN</h3> | + | </div> |
− | <p class="p1"> As displayed in figure 14, we have constructed three devices to express corresponding toxic proteins, plu1537 (BBa_K1668010), plu0840 (BBa_K1668009) and tcdA1 (BBa_K1668008) | + | </div> |
− | (注:parts name超链接到parts页面
| + | <p class="p1"> The whole genome of strain TT01, which has been sequenced in 2003, is predicted to encode 4839 kinds of protein<i>(12)</i>. And many of them are toxic proteins, most of which remain functionally unclear. Although they are toxic to insects and many other bacteria, <i> Photorhabdus luminescens </i> belongs to Risk Group 1 according to DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen) and has no toxic effect on human being at all. More than 50 years of field application of nematodes for controlling insect pests also showed that EN and their symbiotic bacteria ( <i> Photorhabdus luminescens </i> ) are safe to human and EN-based bio-pesticides were exempted from registration in many countries, including USA and all European countries <i>(13)</i>. </p> |
− | </p> | + | <div class="row"> |
− | | + | <div class="col-md-12" style="text-align:center"> |
− | <ul> | + | <img src="https://static.igem.org/mediawiki/parts/1/12/TT01.gif" class="img-center" style="width:40%;" /> |
− | <li> <a href="http://parts.igem.org/Part:BBa_K1668010" > BBa_K1668010 </a> </li> | + | <div class="cpleft"> |
− | <li> <a href="http://parts.igem.org/Part:BBa_K1668009" > BBa_K1668009 </a> </li> | + | <p class="kuvateksti"> Figure 10 Circular representation of the <i> P. luminescens </i> genome. Copyright 2003, Nature Publishing Group </p> |
− | <li> <a href="http://parts.igem.org/Part:BBa_K1668008" > BBa_K1668008 </a> </li> | + | </div> |
− | <li> <a href="http://parts.igem.org/Part: BBa_I0500" > BBa_I0500 </a> </li> | + | </div> |
− | <li> <a href="http://parts.igem.org/Part: BBa_B0034" > BBa_B0034 </a> </li> | + | </div> |
− | <li> <a href="http://parts.igem.org/Part:BBa_K1668011)" > BBa_K1668011 </a> </li> | + | <h3> TOXIN PROTEIN IN <i> P. luminescens </i> TT01 </h3> |
− | </ul> | + | <p class="p1"> Numerous toxins as there are in the genome of <i> P. luminescens </i> TT01, many of them have never been studied. Moreover, many small-molecule toxins are regulated by complex gene cluster, which makes it difficult to express in other standardized hosts, for instance <i> Escherichia coli. </i> Hence, on account of cost and safety, we chose four types of single-gene regulated toxic protein, TcdA1, TcdB1, Plu0840 and Plu1537, instead of small molecules because the former is easier to manipulate and less risky to the environment. </p> |
− | | + | <h3> tcdA1: PORE FORMING PROTEIN of Tc TOXIN FAMILY </h3> |
− | | + | <p class="p1"> The most remarkable toxin family till now is the Tc family, which are widely distributed among different gram-negative and gram-positive bacteria. </p> |
− | <h3>PROMOTER: pBad(BBa_I0500)</h3> | + | <div class="row"> |
− | | + | <div class="col-md-12" style="text-align:center"> |
− | <p class="p1">We chose arabinose inducible promoter pBad (BBa_I0500) because it’s not only of medium strength with arabinose up to certain concentration, but also have little leakage. Moreover, the pBad promoter is repressed by glucose, giving the expression more controllability. In order to promote expression, we chose one of the strongest RBS in Parts Registry (BBa_B0034). </p> | + | <img src="https://static.igem.org/mediawiki/2015/0/0b/ZJU-China_Background2.jpg" class="img-center" style="width:60%;" /> |
− | <p class="p1">BACOBONE: pSB1C3</p> | + | <div class="cpleft"> |
− | <h3>EXPRESSION:</h3> | + | <p class="kuvateksti"> Figure 11 Structures of the TcA prepore and pore complex2. Copyright 2014, Nature Publishing Group </p> |
− | <p class="p1">We adopted tandem expression of toxin and reporter mCherry (BBa_K1668011) to roughly judge whether toxin is expressed. </p> | + | </div> |
− | <p class="p1">We use <i>E.coli</i> <i>DH5α</i> to get plenty recombinants in high quality and quantity. Then we transform the positive recombinants into <i>E.coli</i> <i>BL21(DE3)</i> for high-quality expression.</p> | + | </div> |
− | <p class="p1">To see the results of expression and toxic experiment on termites, please go to (results页面)</p> | + | </div> |
− | | + | <p class="p1"> Tcs are composed of TcA, TcB, and TcC. TcA is supposed to perforate the membrane by forming channel outside-in and translocating the toxic enzymes into the host. Meanwhile the TcB and TcC cooperate with a syringe-like mechanism during membrane insertion(14). </p> |
− | <h3>CIRCUITS CONSTRUCTION</h3> | + | <p class="p1"> In a 2008 study, researchers expressed tcdA1 and tcdB1 in <i> Enterobacter cloacae </i> and fed the termites with <i> E. cloacae </i> to control termites<i>(15)</i>. Inspired by their experiment, we chose to express tcdA1 (Uniprot: Q7N7Y9_PHOLL) and tcdB1(Uniprot: Q7N7Z0_PHOLL) to kill termites. For more details, please go to <a href="https://2015.igem.org/Team:ZJU-China/Parts" title="part page"> parts </a> </p> |
− | <p class="p1">STEP ONE: PCR</p> | + | |
− | <p class="p1">We amplify the target gene from the genome of <i>S.avermitilisi</i> by PCR. We also clone the arabinose inducible promoter pBad from Part Registry. The primer and PCR program can be seen in our biobrick pages(超链接到biobrick).</p> | + | |
− | <p class="p1"> STEP TWO: BACKBONE DIGESTION</p> | + | <h3> Plu1537: Bt HOMOLOGOUS TOXIC PROTEIN </h3> |
− | <p class="p1"> We digest the part BBa_J06702, mCherry with RBS in front and double terminator behind, with restriction enzyme XbaI to make a linearized backbone. </p> | + | <p class="p1"> The exact function of Plu1537 is still unclear, but a research in 2009 indicated that Plu1537 had insecticidal activity against Galleria larvae <i>(16)</i>. </p> |
− | <p class="p1">STEP THREE: SCARLESS ASSEMBLY</p> | + | <p class="p1"> Judging that the Plu1537 protein has 30% predicted amino acid sequence similarity to a 13.6 kDa insecticidal crystal protein cry34Ab1(figure 12) in <i> Bacillus thuringiensis </i> (Uniprot: Q939T0_BACTU), which belongs to Bt crystal protein family, it may have similar toxic effect with cry34Ab1 Bt protein. </p> |
− | <p class="p1"> We use the MultiS_one step cloning kit of Vazyme company to assemble the target gene and backbone. The mechanism is showed in figure 15. </p> | + | <p class="p1"> Bt protein may be the most well-known toxic protein till now. It is widely used in transgene plants to kill the larvae of worm. It also “interacts with membranes to form pores”(17). And there is abundant evidence to ensure the safety of Bt protein. </p> |
− | <p class="p1">For more detailes about scarless assembly and any other protocols, please go to(超链接到protocol)</p> | + | <div class="row"> |
− | | + | <div class="col-md-12" style="text-align:center"> |
− | | + | <img src="https://static.igem.org/mediawiki/parts/6/6b/Bt1.png" class="img-center" style="width:60%;" /> |
− | | + | <div class="cpleft"> |
− | | + | <p class="kuvateksti"> Figure 12 Structures of the Cry34Ab1 protein2. Copyright 2014, Worldwide Protein Data Bank </p> |
− | | + | </div> |
− | <h2>Reference</h2>
| + | </div> |
− | <p class="p1"> 1. X. Zhang et al., APPL MICROBIOL BIOT 72, 986 (2006-09-27, 2006). </p>
| + | </div> |
− | <p class="p1"> 2. H. Ikeda, K. Shin-ya, S. Omura, J IND MICROBIOL BIOT 41, 233 (2014). </p>
| + | <p class="p1"> We have successfully cloned the plu1537 gene and expressed the Plu1537 toxin protein in <i> E.coli </i>BL21 (DE3), for more details, please go to </p> |
− | <p class="p1"> 3. H. Ikeda et al., NAT BIOTECHNOL 21, 526 (2003). </p>
| + | <h3> Plu0840: ENTEROTOXIN Ast HOMOLOGOUS PROTEIN </h3> |
− | <p class="p1"> 4. P. MAZODIER, R. PETTER, C. THOMPSON, J BACTERIOL 171, 3583 (1989). </p>
| + | <p class="p1"> The exact function of Plu0840 is also unclear. A 2007 study confirmed that Plu0840 had weak oral toxicity against two kinds of moth ( <i> S. litura and S. exigua </i> )<i>(13)</i>. </p> |
− | <p class="p1"> 5. F. Flett, V. Mersinias, C. P. Smith, FEMS MICROBIOL LETT 155, 223 (1997). </p>
| + | <p class="p1"> Sequence analysis showed that the plu0840 in the P. luminescens TT01 genome has 55% sequence identity with an enterotoxin Ast from Aeromonas hydrophila, therefore may play a similar role. (see figure 13) </p> |
− | <p class="p1"> 6. 孙宁, 浙江大学 (2013). </p>
| + | <div class="row"> |
− | <p class="p1"> 7. D. J. MACNEIL, J BACTERIOL 170, 5607 (1988). </p>
| + | <div class="col-md-12" style="text-align:center"> |
− | <p class="p1"> 8. R. K. Holmes, M. G. Jobling, (1996-01-19, 1996). </p>
| + | <img src="https://static.igem.org/mediawiki/parts/5/5f/Plu0840_homologous.png" class="img-center" style="width:60%;" /> |
− | <p class="p1"> 9. J. A. HEINEMANN, G. F. SPRAGUE, NATURE 340, 205 (1989). </p>
| + | <div class="cpleft"> |
− | <p class="p1"> 10. T. Kunik et al., P NATL ACAD SCI USA 98, 1871 (2001). </p>
| + | <p class="kuvateksti"> Figure 13 Homologous alignment result of toxic protein Plu0840. Copyright 2014, Worldwide Protein Data Bank </p> |
− | <p class="p1"> 11. V. L. Waters, NAT GENET 29, 375 (2001). </p>
| + | </div> |
− | <p class="p1"> 12. E. Duchaud et al., NAT BIOTECHNOL 21, 1307 (2003). </p>
| + | </div> |
− | <p class="p1"> 13. M. Li, L. H. Qiu, Y. Pang, ANN MICROBIOL 57, 313 (2007). </p>
| + | </div> |
− | <p class="p1"> 14. C. Gatsogiannis et al., NATURE 495, 520 (2013-03-20, 2013). </p>
| + | <p class="p1"> In 2001, researchers studied the function of enterotoxin Ast from Aeromonas hydrophila, concluded that it played an important role in A. hydrophila-induced gastroenteritis in a mouse model(18). </p> |
− | <p class="p1"> 15. R. Zhao et al., APPL ENVIRON MICROB 74, 7219 (2008-12-01, 2008). </p>
| + | <p class="p1"> We have successfully cloned the <i> plu0840 </i> gene and expressed he Plu0840 toxin protein in <i> E.coli </i> BL21 (DE3) , for more details, please go to the next page. </p> |
− | <p class="p1"> 16. M. Li et al., MOL BIOL REP 36, 785 (2009). </p>
| + | <div class="row"> |
− | <p class="p1"> 17. M. S. Kelker et al., PLOS ONE 9, (2014). </p>
| + | <div class="col-md-12" style="text-align:center"> |
− | <p class="p1"> 18. J. Sha, E. V. Kozlova, A. K. Chopra, INFECT IMMUN 70, 1924 (2002). </p>
| + | <img src="https://static.igem.org/mediawiki/parts/7/74/ZJU-CHINA_circuits.png" class="img-center" style="width:60%;" /> |
− |
| + | <div class="cpleft"> |
− |
| + | <p class="kuvateksti">Figure 14 The circuits constructed for toxic protein expression</p> |
− |
| + | </div> |
− | </article> | + | </div> |
− | | + | </div> </h3> |
− | <asider id="popView2" >
| + | <h3> CIRCUITS DESIGN </h3> |
− | | + | <p class="p1"> As displayed in figure 14, we have constructed three devices to express corresponding toxic proteins, plu1537 (BBa_K1668010), plu0840 (BBa_K1668009) and tcdA1 (BBa_K1668008) </p> |
| + | <ul> |
| + | <li> <a href="http://parts.igem.org/Part:BBa_K1668010" title="go to part page"> BBa_K1668010 </a> </li> |
| + | <li> <a href="http://parts.igem.org/Part:BBa_K1668009" title="go to part page"> BBa_K1668009 </a> </li> |
| + | <li> <a href="http://parts.igem.org/Part:BBa_K1668008" title="go to part page"> BBa_K1668008 </a> </li> |
| + | <li> <a href="http://parts.igem.org/Part: BBa_I0500" title="go to part page"> BBa_I0500 </a> </li> |
| + | <li> <a href="http://parts.igem.org/Part: BBa_B0034" title="go to part page"> BBa_B0034 </a> </li> |
| + | <li> <a href="http://parts.igem.org/Part:BBa_K1668011)" title="go to part page"> BBa_K1668011 </a> </li> |
| + | </ul> |
| + | <h3> PROMOTER: pBad(BBa_I0500) </h3> |
| + | <p class="p1"> We chose arabinose inducible promoter pBad (BBa_I0500) because it's not only of medium strength with arabinose up to certain concentration, but also have little leakage. Moreover, the pBad promoter is repressed by glucose, giving the expression more controllability. In order to promote expression, we chose one of the strongest RBS in Parts Registry (BBa_B0034). </p> |
| + | <p class="p1"> BACOBONE: pSB1C3 </p> |
| + | <h3> EXPRESSION: </h3> |
| + | <p class="p1"> We adopted tandem expression of toxin and reporter mCherry (BBa_K1668011) to roughly judge whether toxin is expressed. </p> |
| + | <p class="p1"> We use <i> E.coli </i> <i> DH5α </i> to get plenty recombinants in high quality and quantity. Then we transform the positive recombinants into <i> E.coli </i> <i> BL21 (DE3) </i> for high-quality expression. </p> |
| + | <p class="p1"> To see the results of expression and toxic experiment on termites, please go to <a href="https://2015.igem.org/Team:ZJU-China/Results">results</a></p> |
| + | <h3> CIRCUITS CONSTRUCTION </h3> |
| + | <p class="p1"> STEP ONE: PCR </p> |
| + | <p class="p1"> We amplify the target gene from the genome of <i> S.avermitilisi </i> by PCR. We also clone the arabinose inducible promoter pBad from Part Registry. The primer and PCR program can be seen in our <a href="#biobrick" title="more about biobrick"> biobrick pages </a> . </p> |
| + | <br /> |
| + | <p class="p1"> STEP TWO: BACKBONE DIGESTION </p> |
| + | <p class="p1"> We digest the part BBa_J06702, mCherry with RBS in front and double terminator behind, with restriction enzyme XbaI to make a linearized backbone. </p> |
| + | <br /> |
| + | <p class="p1"> STEP THREE: SCARLESS ASSEMBLY </p> |
| + | <p class="p1"> We use the MultiS_one step cloning kit of Vazyme company to assemble the target gene and backbone. The mechanism is showed in figure 15. </p> |
| + | <p class="p1"> For more details about scarless assembly and any other protocols, please go to <a href="#protocol" title="more about protocol"> protocol </a> </p> |
| + | <div class="row"> |
| + | <div class="col-md-12" style="text-align:center"> |
| + | <img src="https://static.igem.org/mediawiki/parts/6/64/Scarless_cloning.jpg" class="img-center" style="width:60%;" /> |
| + | <div class="cpleft"> |
| + | <p class="kuvateksti"> Figure 15 the mechanism of scarless cloning </p> |
| + | </div> |
| + | </div> |
| + | </div> |
| + | </div> |
| + | <h2> Reference </h2> |
| + | <p class="p1"> 1. X. Zhang et al., APPL MICROBIOL BIOT 72, 986 (2006-09-27, 2006). </p> |
| + | <p class="p1"> 2. H. Ikeda, K. Shin-ya, S. Omura, J IND MICROBIOL BIOT 41, 233 (2014). </p> |
| + | <p class="p1"> 3. H. Ikeda et al., NAT BIOTECHNOL 21, 526 (2003). </p> |
| + | <p class="p1"> 4. P. MAZODIER, R. PETTER, C. THOMPSON, J BACTERIOL 171, 3583 (1989). </p> |
| + | <p class="p1"> 5. F. Flett, V. Mersinias, C. P. Smith, FEMS MICROBIOL LETT 155, 223 (1997). </p> |
| + | <p class="p1"> 6. Ning Sun, BIOCHEM MOL BIOL EDU (2013). </p> |
| + | <p class="p1"> 7. D. J. MACNEIL, J BACTERIOL 170, 5607 (1988). </p> |
| + | <p class="p1"> 8. R. K. Holmes, M. G. Jobling, (1996-01-19, 1996). </p> |
| + | <p class="p1"> 9. J. A. HEINEMANN, G. F. SPRAGUE, NATURE 340, 205 (1989). </p> |
| + | <p class="p1"> 10. T. Kunik et al., P NATL ACAD SCI USA 98, 1871 (2001). </p> |
| + | <p class="p1"> 11. V. L. Waters, NAT GENET 29, 375 (2001). </p> |
| + | <p class="p1"> 12. E. Duchaud et al., NAT BIOTECHNOL 21, 1307 (2003). </p> |
| + | <p class="p1"> 13. M. Li, L. H. Qiu, Y. Pang, ANN MICROBIOL 57, 313 (2007). </p> |
| + | <p class="p1"> 14. C. Gatsogiannis et al., NATURE 495, 520 (2013-03-20, 2013). </p> |
| + | <p class="p1"> 15. R. Zhao et al., APPL ENVIRON MICROB 74, 7219 (2008-12-01, 2008). </p> |
| + | <p class="p1"> 16. M. Li et al., MOL BIOL REP 36, 785 (2009). </p> |
| + | <p class="p1"> 17. M. S. Kelker et al., PLOS ONE 9, (2014). </p> |
| + | <p class="p1"> 18. J. Sha, E. V. Kozlova, A. K. Chopra, INFECT IMMUN 70, 1924 (2002). </p> |
| + | </article> |
| + | <asider id="popView2"> |
| <br /> | | <br /> |
| <br /> | | <br /> |
− | <header>Toxin manufacture</header>
| + | <header> |
− | <ul id="nav2">
| + | Toxin manufacture |
− | <br>
| + | </header> |
− | <br>
| + | <ul id="nav2"> |
− | <li><a href="#pos1">Introduction</a></li>
| + | <br /> |
− | <br><br><br>
| + | <br /> |
− | <li><a href="#pos2">Avermectin manufacture</a></li>
| + | <li> <a href="#pos1"> Introduction </a> </li> |
− | <br><br><br>
| + | <br /> |
− | <li><a href="#pos3">Toxic protein manufacture</a></li>
| + | <br /> |
− | | + | <br /> |
− | <br>
| + | <li> <a href="#pos2"> Avermectin manufacture </a> </li> |
− | | + | <br /> |
− | | + | <br /> |
− | | + | <br /> |
− |
| + | <li> <a href="#pos3"> Toxic protein manufacture </a> </li> |
− | </ul>
| + | <br /> |
− | </asider>
| + | </ul> |
− | </div> | + | </asider> |
− | <!-- by xmm -->
| + | </div> |
− | | + | <!-- by xmm --> |
− | | + | <aside id="popView1"> |
− | | + | <br /> |
− | | + | <br /> |
− | <aside id="popView1" >
| + | <header> |
| + | Project |
| + | </header> |
| + | <ul id="nav"> |
| + | <br /> |
| + | <br /> |
| + | <li> <a href="https://2015.igem.org/Team:ZJU-China/Project"> Over View </a> </li> |
| + | <br /> |
| + | <li> <a href="https://2015.igem.org/Team:ZJU-China/Project/Termite_Issue"> Termite Issue </a> </li> |
| + | <br /> |
| + | <li> <a href="https://2015.igem.org/Team:ZJU-China/Design/Toxinmanufacture"> Toxins </a> </li> |
| + | <br /> |
| + | <li> <a href="https://2015.igem.org/Team:ZJU-China/Design/CNC"> CNC </a> </li> |
| + | <br /> |
| + | <li> <a href="https://2015.igem.org/Team:ZJU-China/Design/Termites"> Termites </a> </li> |
| + | <br /> |
| + | <li> <a href="https://2015.igem.org/Team:ZJU-China/Project/Protocol"> Protocol</a> </li> |
| | | |
| <br /> | | <br /> |
− | <br />
| + | </ul> |
− | <header>Project</header>
| + | |
− |
| + | |
− | <ul id="nav">
| + | |
− | <br>
| + | |
− | <br>
| + | |
− | <li><a href="https://2015.igem.org/Team:ZJU-China/Project">Over View</a></li>
| + | |
− | <br>
| + | |
− | <li><a href="https://2015.igem.org/Team:ZJU-China/Project/Termite_Issue">Termite Issue</a></li>
| + | |
− | <br>
| + | |
− | <li><a href="https://2015.igem.org/Team:ZJU-China/Design/Toxinmanufacture">Toxins</a></li>
| + | |
− | <br>
| + | |
− | <li><a href="https://2015.igem.org/Team:ZJU-China/Design/CNC">CNC</a></li>
| + | |
− | <br>
| + | |
− | <li><a href="https://2015.igem.org/Team:ZJU-China/Design/Termites">Termites</a></li>
| + | |
− | <br>
| + | |
− | <li><a href="https://2015.igem.org/Team:ZJU-China/Results">Results</a></li>
| + | |
− | <br>
| + | |
− | <li><a href="https://2015.igem.org/Team:ZJU-China/Parts">Parts</a></li>
| + | |
− | <br>
| + | |
− | </ul>
| + | |
| </aside> | | </aside> |
− |
| + | <br /> |
− | <br><br><br><br><br> | + | <br /> |
− |
| + | <br /> |
− | <!---------------------------------------------------------------------------> | + | <br /> |
− | </body> | + | <br /> |
− | | + | <!----> |
− | | + | </body> |
− | | + | |
| </html> | | </html> |
− | {{ZJU-China/mascot}} | + | {{ZJU-China/mascot}} {{:Team:ZJU-China/template/foot}} |
− | {{:Team:ZJU-China/template/foot}} | + | |