|
|
(46 intermediate revisions by 5 users not shown) |
Line 1: |
Line 1: |
− | {{:Team:ZJU-China/template/head}} | + | {{:Team:ZJU-China/template/head}} |
| <html> | | <html> |
− | <head> | + | <head> |
| + | |
| <link rel="stylesheet" type="text/css" href="https://2015.igem.org/Team:ZJU-China/css/ZJU-bootstrap?action=raw&ctype=text/css" /> | | <link rel="stylesheet" type="text/css" href="https://2015.igem.org/Team:ZJU-China/css/ZJU-bootstrap?action=raw&ctype=text/css" /> |
− | <link rel="stylesheet" type="text/css" href="https://2015.igem.org/Team:ZJU-China/css/ZJU-stylesheet?action=raw&ctype=text/css" /> | + | <link rel="stylesheet" type="text/css" href="https://2015.igem.org/Team:ZJU-China/css/ZJU-stylesheet?action=raw&ctype=text/css" /> |
− | <script type="text/javascript" src="https://2015.igem.org/Team:ZJU-China/Template/label?action=raw&ctype=text/javascript"></script> | + | <script type="text/javascript" src="https://2015.igem.org/Team:ZJU-China/Template/label?action=raw&ctype=text/javascript"> |
| + | </script> |
| <link rel="stylesheet" type="text/css" href="https://2015.igem.org/Team:ZJU-China/css/label/label?action=raw&ctype=text/css" /> | | <link rel="stylesheet" type="text/css" href="https://2015.igem.org/Team:ZJU-China/css/label/label?action=raw&ctype=text/css" /> |
− | <script type="text/javascript" src="https://2015.igem.org/Team:ZJU-China/js/globe/ZJU-ajax.js?action=raw&ctype=text/javascript"</script> | + | <!-- 点击 显示 --> |
| + | <script language="javaScript"> |
| + | function showHideText1() |
| + | { |
| + | if (jQuery('#show1').css('display')=="none"){ |
| + | jQuery('#show1').css('display','inline'); |
| + | }else{ |
| + | jQuery('#show1').css('display','none'); |
| + | }} |
| + | function showHideText2() |
| + | { |
| + | if (jQuery('#show2').css('display')=="none"){ |
| + | jQuery('#show2').css('display','inline'); |
| + | }else{ |
| + | jQuery('#show2').css('display','none'); |
| + | } |
| + | } |
| + | </script> |
| </head> | | </head> |
| <body id="wrapper"> | | <body id="wrapper"> |
− |
| |
| | | |
| <div id="page-content-wrapper"> | | <div id="page-content-wrapper"> |
| <article> | | <article> |
− | <h2 style="color:green;font-size:50px">Toxin manufacture</h2> | + | <h2 style="color:green;font-size:50px"> Toxin Manufacture </h2> |
− | <h2 id="pos1">Introduction</h2> | + | <h2 id="pos1"> Introduction </h2> |
− | <p class="p1"> Biological pesticides can be divided into two types: small compounds and biological macromolecules. On one hand, small compounds are more prone to be absorbed by termites while more costly to produce. On the other hand, macromolecules are easier and cheaper to produce whereas sometimes not as effective as small molecules. Hence, to kill termites more efficiently and effectively, we choose both——insecticidal small molecule avermectin and several toxic proteins. We plan to overexpress avermectin in its host <i>Streptomyces avermitilis</i> and express three kinds of toxic protein in <i>Escherichia coli BL21(DE3)</i>. Then we embed the engineered <i>S. avermitilis</i> and <i>E.coli</i> with CNC carrier and fed termites with the CNC embedded bacteria. For more information about CNC, please go to(CNC的主页面) </p> | + | <p class="p1"> Biological pesticides can be divided into two types: small molecular compounds and biological macromolecules. On the one hand, small compounds are more prone to be absorbed by termites while more costly to produce. On the other hand, macromolecules are easier and cheaper to produce whereas sometimes not as effective as small molecules. Hence, to kill termites more efficiently and effectively, we choose both--We plan to overexpress avermectin in its host <i> Streptomyces avermitilis </i> and express four kinds of toxic protein in <i> Escherichia coli</i> BL21 (DE3) . Then we embed the engineered <i> S. avermitilis </i> and <i> E.coli </i> with CNC carrier and feed termites with the CNC imbedded bacteria. For more information about CNC, please go to <a href="https://2015.igem.org/Team:ZJU-China/Design/CNC" title="about CNC"> the main page of CNCs </a> . </p> |
− | <h2 id="pos2">Avermectin manufacture</h2> | + | <h2 id="pos2"> Avermectin manufacture </h2> |
− | <p class="p1"> Judging that many toxic small compounds are harmful to human being, we choose avermectin, which is highly specific to insect and does no harm to human. For one thing, being a secondary metabolite produced by <i>Streptomyces avermitilis</i>, avermectin is regulated by an 80kb gene cluster(1), making it difficult to express in other standardized strains, for instance, <i>Escherichia coli</i>. For another, the avermectin yield in wild type<i> S. avermitilis</i> strain is comparatively low(1). Nevertheless, we plan to engineer the wild <i>S. avermitilis</i> to improve the yield of avermectin, embed the engineered strain with CNC and feed termites with CNC embedded <i>S. avermitilis</i>. </p> | + | <p class="p1"> Judging that many toxic small compounds are harmful to human being, we choose avermectin, which is highly specific to insects and does little harm to human. For one thing, being a secondary metabolite produced by <i> Streptomyces avermitilis </i> , avermectin is encoded by an 80kb gene cluster, making it difficult to be engineered in other standardized strains, for instance, <i> Escherichia coli </i>. For another, the avermectin yield in wild type <i> S. avermitilis </i> strain is comparatively low. Nevertheless, we plan to engineer the wild <i> S. avermitilis </i> to improve the yield of avermectin, embed the engineered strain with CNCs and feed termites with CNC embedded <i> S. avermitilis </i> . </p> |
− | <div class="col-md-12 feat-right" style="text-align:center">
| + | <div id="show1"> |
− | <img src="https://static.igem.org/mediawiki/parts/1/10/Avermectin.png" class="img-center" style="width:60%;"></img>
| + | <h3> AVERMECTIN: EFFECTIVE AND BROAD-SPECTRUM PESTICIDE </h3> |
− | <div class="cpleft">
| + | <h3> <p class="p1"> For years, people always adopt the organochlorine pesticides such as chlordane and mirex to achieve prevention and control of termites, but these organochlorine pesticides will produce pollution and potential harm to the environment. Avermectin is a new type of highly efficient biological pesticide, which has good control effect to termites and other pests, and no pollution to the environment. </p> |
− | <p class="kuvateksti">
| + | <div class="row"> |
− | Figure 1 abstract process of self-assembly
| + | <div class="col-md-12" style="text-align:center"> |
− | </p>
| + | <img src="https://static.igem.org/mediawiki/parts/1/10/Avermectin.png" class="img-center" style="width:60%;" /> |
− | </div>
| + | <div class="cpleft"> |
− | <h3>AVERMECTIN: EFFECTIVE AND BROAD-SPECTRUM PESTICIDE</h3>
| + | <p class="kuvateksti"> Figure 1 Abstract process of self-assembly </p> |
− | <h3> <p class="p1"> For years, people always adopt the organochlorine pesticides such as chlordane and mirex to achieve prevention and control of termites, but these organochlorine pesticides will produce pollution and potential harm to the environment. Avermectin is a new type of high efficient biological pesticide, which has good control effect to the termites and other pests, and no pollution to the environment(1). </p> </h3>
| + | </div> |
− | <h3>HOST OF AVERMECTIN——<i>Streptomyces avermitilis</i></h3> | + | </div> |
− | <p class="p1"> <i>Streptomyces avermitilis</i>, a soil-dwelling gram-positive microorganism, is a rich source of numerous secondary metabolites. It’s a kind of Actinomycetes with staghorn-like hypha (figure 2). Now it has been industrialized to produce the commercially important antiparasitic agent avermectin(2). Early in 2003, the complete genome of <i>Streptomyces avermitilis</i> had been sequenced(3). </p>
| + | </div> </h3> |
− | <div class="col-md-12 feat-right" style="text-align:center">
| + | |
− | <img src="https://static.igem.org/mediawiki/parts/c/ce/Streptomyces_avermitilis_.png" class="img-center" style="width:60%;"></img>
| + | <h3> HOST OF AVERMECTIN - <i> Streptomyces avermitilis </i> </h3> |
− | <div class="cpleft">
| + | <p class="p1"> <i> Streptomyces avermitilis </i> , a soil-dwelling gram-positive microorganism, is a rich source of numerous secondary metabolites. It's a kind of Actinomycetes with staghorn-like hypha (Figure 2). Now it has been industrialized to produce the commercially important antiparasitic agent avermectin(2). Early in 2003, the complete genome of <i> Streptomyces avermitilis </i> had been sequenced(3). </p> |
− | <p class="kuvateksti">
| + | <div class="row"> |
− | Figure 2 the picture of<i> Streptomyces avermitilis</i> under scanning electron microscope.
| + | <div class="col-md-12" style="text-align:center"> |
− | </p>
| + | <img src="https://static.igem.org/mediawiki/parts/c/ce/Streptomyces_avermitilis_.png" class="img-center" style="width:60%;" /> |
− | </div>
| + | <div class="cpleft"> |
− | | + | <p class="kuvateksti"> Figure 2 The picture of <i> Streptomyces avermitilis </i> under scanning electron microscope. </p> |
− | <p class="p1"> In past years, scientists had been trying to transform gene into <i>S.avermitilis.</i> Until 1989, gene transformation in <i>S.avermitilis </i>was achieved through conjugation(超链接到下面的conjugation) between <i>E.coli strains</i>(eg, <i>s17-1</i>)and <i>S.avermitilis</i>(4)<i>¬. </i>However, the efficiency was limited by the methyl-specific restriction system in <i>S.avermitilisi</i>, which show strong restriction to gene methylated in normal <i>E.coli strains</i>(5). Eventually, high efficiency conjugation was achieved till the introduction of methylase-negative donor strain<i> E.coli</i> <i>ET12567</i> (超链接到下面的ET12567介绍) Now conjugation and strain <i>ET12567</i> has been ubiquitously adopted in the gene transformation of <i>S.avermitilis.</i> </p>
| + | </div> |
− | <h3>PROBLEMS AND SOLUTIONS</h3>
| + | </div> |
− | <p class="p1"> Environmentally friendly though avermectin is, the yield of avermectin in wild<i> S. avermitilis</i> doesn’t fulfill our needs. Many efforts have been paid to increase its yield, including developing genome-minimized hosts, engineering the metabolic network(2), etc. In our project, we plan to overexpress three genes, <i>frr, orfX, metK</i> in <i>S. avermitilis</i> to improve the yield of avermectin. </p>
| + | </div> |
− | <h3>CIRCUITS DESIGN</h3>
| + | <p class="p1"> In past years, scientists had been trying to transform gene into <i> S.avermitilis. </i> Until 1989, gene transformation into <i> S.avermitilis </i> was achieved through <a href="#CONJUGATION" title="more about conjugation"> conjugation </a> between <i> E.coli strains </i> (eg, <i> s17-1 </i> )and <i> S.avermitilis </i> <i>(4)</i>. However, the efficiency was limited by the methyl-specific restriction system in <i> S.avermitilisi </i> , which shows strong restriction to gene methylated in normal <i> E.coli</i> strains <i>(5)</i>. Eventually, high efficiency conjugation was achieved till the introduction of methylase-negative donor strain <i> E.coli </i> <a href="#ET12567" title="about ET12567"> ET12567 </a> Now conjugation and strain ET12567 has been ubiquitously adopted in the gene transformation of <i> S.avermitilis. </i> </p> |
− | <p class="p1"> We have constructed three circuits to improve the yield of avermectin(figure 3). PROMOTER: ermEp We chose ermEp, a strong constitutive promoter, to overexpress the three genes in <i>S.avermitilis</i>. It should be noticed that ermEp can only be expressed in<i> S.avermitilis</i> strains instead of <i>Escherichia coli</i> or any other chassis. </p>
| + | <h3> PROBLEMS AND SOLUTIONS </h3> |
− | <div class="col-md-12 feat-right" style="text-align:center">
| + | <p class="p1"> Environmentally friendly though avermectin is, the yield of avermectin in wild <i> S. avermitilis </i> doesn't fulfill our needs. Many efforts have been paid to increase its yield, including developing genome-minimized hosts, engineering the metabolic network<i>(2)</i>, etc. In our project, we plan to overexpress three genes, <i> frr, orfX, metK </i> in <i> S. avermitilis </i> to improve the yield of avermectin. </p> |
− | <img src="https://static.igem.org/mediawiki/parts/6/6d/Avermectin_circuits.png" class="img-center" style="width:60%;"></img>
| + | <h3> CIRCUITS DESIGN </h3> |
− | <div class="cpleft">
| + | <p class="p1"> We have constructed three circuits to improve the yield of avermectin(Figure 3). PROMOTER: ermEp We chose ermEp, a strong constitutive promoter, to overexpress the three genes in <i> S.avermitilis </i> . It should be noticed that ermEp can only be expressed in <i> S.avermitilis </i> strains instead of <i> Escherichia coli </i> or any other chassis. </p> |
− | <p class="kuvateksti">
| + | <div class="row"> |
− | Figure 3 the circuits constructed for yield improvement of avermectin in <i>S.avermitilis</i>.
| + | <div class="col-md-12" style="text-align:center"> |
− | </p>
| + | <img src="https://static.igem.org/mediawiki/parts/6/6d/Avermectin_circuits.png" class="img-center" style="width:60%;" /> |
− | </div>
| + | <div class="cpleft"> |
− | <h3>BACKBONE: PL96 and PL97</h3>
| + | <p class="kuvateksti"> Figure 3 The circuits constructed for yield improvement of avermectin in <i> S.avermitilis </i> . </p> |
− | <p class="p1"> PL96 and PL97 are two high-copy vectors we used to overexpress our target genes. We get these vectors through commercial purchase. These vectors have pUC18 and pIJ101 replication origins for high-copy plasmid number in <i>Escherichia coli</i> and <i>S.avermitilis</i>, respectively, and the oriT (RK2) allows the efficient and convenient plasmid transfer from <i>E.coli</i> to <i>S.avermitilis</i>(6). </p>
| + | </div> |
− | <div class="col-md-12 feat-right" style="text-align:center">
| + | </div> |
− | <img src="https://static.igem.org/mediawiki/parts/5/5c/PL96_map.png" class="img-center" style="width:60%;"></img>
| + | </div> |
− | <div class="cpleft">
| + | <h3> BACKBONE: PL96 and PL97 </h3> |
− | <p class="kuvateksti">
| + | <p class="p1"> PL96 and PL97 are two high-copy vectors we used to overexpress our target genes. We get these vectors through commercial purchase. These vectors have pUC18 and pIJ101 replication origins for high-copy plasmid number in <i> Escherichia coli </i> and <i> S.avermitilis </i> , respectively, and the oriT (RK2) allows the efficient and convenient plasmid transfer from <i> E.coli </i> to <i> S.avermitilis </i> (6). </p> |
− | Figure 4 the map of plasmid backbone PL96.
| + | <div class="row"> |
− | </p>
| + | <div class="col-md-12" style="text-align:center"> |
− | </div>
| + | <img src="https://static.igem.org/mediawiki/parts/5/5c/PL96_map.png" class="img-center" style="width:80%;" /> |
− | <div class="col-md-12 feat-right" style="text-align:center">
| + | <div class="cpleft"> |
− | <img src="https://static.igem.org/mediawiki/parts/f/fd/PL97_map.png" class="img-center" style="width:60%;"></img>
| + | <p class="kuvateksti"> Figure 4 the map of plasmid backbone PL96. </p> |
− | <div class="cpleft">
| + | </div> |
− | <p class="kuvateksti">
| + | </div> |
− | Figure 5 the map of plasmid backbone PL97.
| + | <div class="col-md-12" style="text-align:center"> |
− | </p>
| + | <img src="https://static.igem.org/mediawiki/parts/f/fd/PL97_map.png" class="img-center" style="width:80%;" /> |
− | </div>
| + | <div class="cpleft"> |
− | <p class="p1">To be noticed, we use special antibiotic aparamycin to choose final transformants. And there are aparamycin resistent gene <i>acc</i> in the backbone. </p>
| + | <p class="kuvateksti"> Figure 5 The map of plasmid backbone PL97. </p> |
− | <h3>EXPRESSION:</h3>
| + | </div> |
− | <p class="p1">In order to<i> </i>construct and express the three gene in <i>S.avermitilis</i>, we have adopted two hosts, <i>E.coli</i> <i>DH5α</i>and <i>E.coli</i> <i>ET12567</i>. Then the target vectors are transferred from <i>E.coli</i> <i>ET12567 </i>to <i>S.avermitilis</i> by conjugation.</p>
| + | </div> |
− | <p class="p1"> </p>
| + | </div> |
− | <h3>PRIMARY HOST: <i>E.coli</i> <i>DH5α</i></h3>
| + | <p class="p1"> To be noticed, we use special antibiotic aparamycin to choose final transformants. And there are aparamycin resistent gene <i> acc </i> in the backbone. </p> |
− | <p class="p1"> As usual, we use <i>E.coli</i> <i>DH5α</i> to get plenty of recombinants in high quality and quantity. </p>
| + | <h3> EXPRESSION: </h3> |
− | <h3>INTERMEDIA HOST: <i>E.coli</i> <i>ET12567</i></h3>
| + | <p class="p1"> In order to <i> </i> construct and express the three gene in <i> S.avermitilis </i> , we have adopted two hosts, <i> E.coli </i> DH5α and <i> E.coli </i> ET12567 . Then the target vectors are transferred from <i> E.coli </i> ET12567 to <i> S.avermitilis </i> by conjugation. </p> |
− | <p class="p1"><i>E.coli</i> <i>ET12567 </i>is a methylase-negative donor strain first used by MacNeil in 1988(7). And we use <i>E.coli</i> <i>ET12567</i> to demethylation the recombinants to better suit the methyl-specific restriction system in <i>S.avermitilisi.</i>(超链接到上面的介绍页面) </p>
| + | <p class="p1"> </p> |
− | <h3>CONJUGATION:</h3>
| + | <h3> PRIMARY HOST: <i> E.coli </i> DH5α </h3> |
− | <p class="p1">Bacterial conjugation is the transfer of genetic material between bacterial cells by direct cell-to-cell contact or by a bridge-like connection between two cells. During conjugation the donor cell provides a conjugative or mobilizable genetic element that is most often a plasmid or transposon(8). In laboratories, successful transfers have been reported from bacteria to yeast(9), plants(10), mammalian cells(11), etc. In our project, we use the conjugation between <i>E.coli</i> <i>ET12567</i> and <i>S.avermitilisi</i> to overexpress three target genes. </p>
| + | <p class="p1" id="ET12567"> As usual, we use <i> E.coli </i> DH5α to get plenty of recombinants in high quality and quantity. </p> |
− | <div class="col-md-12 feat-right" style="text-align:center">
| + | <h3> INTERMEDIA HOST: <i> E.coli </i> ET12567 </h3> |
− | <img src="https://static.igem.org/mediawiki/parts/4/42/Conjugation_LY.png" class="img-center" style="width:60%;"></img>
| + | <p class="p1"> , <i> E.coli </i> ET12567 is a methylase-negative donor strain first used by MacNeil in 1988<i>(7)</i>. And we use <i> E.coli </i> ET12567 to demethylation the recombinants to better suit the methyl-specific restriction system in <a href="#avermitilisi" title="more about S.avermitilisi"> <i> S.avermitilisi. </i> </a> </p> |
− | <div class="cpleft">
| + | <h3 id="CONJUGATION"> CONJUGATION: </h3> |
− |
| + | <p class="p1"> Bacterial conjugation is the transfer of genetic material between bacterial cells by direct cell-to-cell contact or by a bridge-like connection between two cells. During conjugation the donor cell provides a conjugative or mobilizable genetic element that is most often a plasmid or transposon(8). In laboratories, successful transfers have been reported from bacteria to yeast(9), plants(10), mammalian cells(11), etc. In our project, we use the conjugation between <i> E.coli </i> ET12567 and <i> S.avermitilisi </i> to overexpress three target genes. </p> |
− | </div>
| + | <div class="row"> |
− | <p class="p1">To see the results of expression and toxic experiment on termites, please go to (results页面) </p>
| + | <div class="col-md-12" style="text-align:center"> |
− | <h3>CIRCUITS CONSTRUCTION</h3>
| + | <img src="https://static.igem.org/mediawiki/parts/4/42/Conjugation_LY.png" class="img-center" style="width:60%;" /> |
− | <p class="p1"> STEP ONE: PCR</p>
| + | <div class="cpleft"> |
− | <p class="p1">We amplify the target gene from the genome of <i>S.avermitilisi</i> by PCR. The primer and PCR program can be seen in our biobrick pages(超链接到biobrick).</p>
| + | </div> |
− | <br>
| + | </div> |
− | <p class="p1">STEP TWO: TA CLONING</p>
| + | </div> |
− | <p class="p1">We use TA cloning to efficiently clone the PCR products. In TA cloning, we use pMD19-T Vector, a vector transformed from pUC19 vector, to improve the efficiency of digestion and connection. As a result, we get three recombinant vectors of target genes and pMD19-T.</p>
| + | <p class="p1"> To see the results of expression and toxic experiment on termites, please go to <a href="https://2015.igem.org/Team:ZJU-China/Results" title="Results"> results page </a> . </p> |
− | <br>
| + | <h3 id="avermitilisi"> CIRCUITS CONSTRUCTION </h3> |
− | <p class="p1">STEP THREE: DIGESTION AND CONNECTION</p>
| + | <p class="p1"> STEP ONE: PCR </p> |
− | <p class="p1">We digest the three recombinants and backbone PL96 with restriction enzymes NdeI, XbaI, then connect the fragments and backbone. Similarly, we use NdeI, HindⅢ to digest the three recombinants and backbone PL97 and connect the corresponding product. Then we get the target plasmids.</p>
| + | <p class="p1"> We amplify the target gene from the genome of <i> S.avermitilisi </i> by PCR. The primer and PCR program can be seen in our <a href="#biobrick" title="more about biobrick"> biobrick pages </a> . </p> |
− | <div class="col-md-12 feat-right" style="text-align:center">
| + | <br /> |
− | <img src="https://static.igem.org/mediawiki/parts/3/3f/PL96_color.png" class="img-center" style="width:60%;"></img>
| + | <p class="p1"> STEP TWO: TA CLONING </p> |
− | <div class="cpleft">
| + | <p class="p1"> We use TA cloning to efficiently clone the PCR products. In TA cloning, we use pMD19-T Vector, a vector transformed from pUC19 vector, to improve the efficiency of digestion and connection. As a result, we get three recombinant vectors of target genes and pMD19-T. </p> |
− | <p class="kuvateksti">
| + | <br /> |
− | Figure 7 the sketch map of PL96 plasmid construction.
| + | <p class="p1"> STEP THREE: DIGESTION AND CONNECTION </p> |
− | </p>
| + | <p class="p1"> We digest the three recombinants and backbone PL96 with restriction enzymes NdeI, XbaI, then connect the fragments and backbone. Similarly, we use NdeI, Hind III to digest the three recombinants and backbone PL97 and connect the corresponding product. Then we get the target plasmids. </p> |
− | </div>
| + | <div class="row"> |
− | <div class="col-md-12 feat-right" style="text-align:center">
| + | <div class="col-md-6" style="text-align:center"> |
− | <img src="https://static.igem.org/mediawiki/parts/4/43/97_color.png" class="img-center" style="width:60%;"></img> | + | <img src="https://static.igem.org/mediawiki/parts/3/3f/PL96_color.png" class="img-center" style="width:80%;" /> |
− | <div class="cpleft">
| + | <div class="cpleft"> |
− | <p class="kuvateksti">
| + | <p class="kuvateksti"> Figure 7 the sketch map of PL96 plasmid construction. </p> |
− | Figure 8 the sketch map of PL97 plasmid construction.
| + | </div> |
− | </p>
| + | </div> |
− | </div>
| + | <div class="col-md-6" style="text-align:center"> |
− | <p class="p1">For more detailed protocols, please go to(超链接到protocol). </p>
| + | <img src="https://static.igem.org/mediawiki/parts/4/43/97_color.png" class="img-center" style="width:80%;" /> |
− | <h2 id="pos3">Toxic protein manufacture</h2> | + | <div class="cpleft"> |
− | <p class="p1"> In order to kill the termites, we have chosen four types of insecticidal toxic proteins, respectively Tc protein tcdA1, tcdB1, bt-like Plu0840 and enterotoxin-like Plu1537, from <i>Photorhabdus luminescens TT01, </i>a bacterium of native toxin storehouse. Then we cloned these genes from the genome of <i>TT01</i>, constructed corresponding vectors, successfully expressed these proteins in <i>Escherichia coli BL21(DE3) </i>and fed the termites with the raw engineered BL21 and that embedded with CNC. For more information about CNC, please go to(CNC的主页面) </p> | + | <p class="kuvateksti"> Figure 8 the sketch map of PL97 plasmid construction. </p> |
− | <h3>HOST OF TOXIN -- <i>Photorhabdus luminescens</i></h3> | + | </div> |
− | <p class="p1"><i>Photorhabdus luminescens</i>, one kind of gram-negative bacteria, is capable of producing and releasing a variety of insecticidal and bactericidal toxins. Living in symbiosis with nematodes, “the bacteria are released and start to produce toxins that eventually kill the insect after insect larvae are invaded by nematodes, thereby generating a food resource for bacteria and nematodes”(12).</p>
| + | </div> |
− | <div class="col-md-12 feat-right" style="text-align:center"> | + | </div> |
− | <img src="https://static.igem.org/mediawiki/parts/e/e2/TT01_2.gif" class="img-center" style="width:60%;"></img> | + | <p class="p1"> For more detailed protocols, please go to <a href="#protocol" title="more about protocol"> protocol </a> . </p> |
− | <div class="cpleft">
| + | </div> |
− | <p class="kuvateksti">
| + | <h2 id="pos3"> Toxic protein manufacture </h2> |
− | Figure 9 Caterpillars infected with nematodes carrying symbiotic Photorhabdus luminescens2. Copyright 2003, Nature Publishing Group
| + | <p class="p1"> In order to kill the termites, we have chosen four types of insecticidal toxic proteins, respectively Tc protein tcdA1, tcdB1, bt-like Plu0840 and enterotoxin-like Plu1537, from <i> Photorhabdus luminescens</i> TT01, a bacterium of native toxin storehouse. Then we clone these genes from the genome of TT01 , construct corresponding vectors, successfully express these proteins in <i> Escherichia coli</i> BL21 (DE3) and feed the termites with the raw engineered BL21 embedded with CNC. For more information about CNCs, please go to <a href="https://2015.igem.org/Team:ZJU-China/Design/CNC" title="about CNC">the main page of CNCs</a> </p> |
− | </p>
| + | <div id="show2"> |
− | </div>
| + | <h3> HOST OF TOXIN -- <i> Photorhabdus luminescens </i> </h3> |
− | <p class="p1"> The whole genome of strain TT01, which has been sequenced in 2003, is predicted to encode 4839 kinds of protein(12). And many of them are toxic proteins, most of which remain functionally unclear. Although they are toxic to insects and many other bacteria, <i>Photorhabdus luminescens</i> belongs to Risk Group 1 according to DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen) and has no toxic effect on human being at all. “More than 50 years of field application of nematodes for controlling insect pests also showed that EN and their symbiotic bacteria (<i>Photorhabdus luminescens</i>) are safe to human” and “EN-based bio-pesticides were exempted from registration in many countries, including USA and all European countries”(13). </p>
| + | <p class="p1"> <i> Photorhabdus luminescens </i> , one kind of gram-negative bacteria, is capable of producing and releasing a variety of insecticidal and bactericidal toxins. Living in symbiosis with nematodes, the bacteria are released and start to produce toxins that eventually kill the insect after insect larvae are invaded by nematodes, thereby generating a food resource for bacteria and nematodes (12). </p> |
− | <div class="col-md-12 feat-right" style="text-align:center">
| + | <div class="row"> |
− | <img src="https://static.igem.org/mediawiki/parts/1/17/TcdA1.png" class="img-center" style="width:60%;"></img> | + | <div class="col-md-12" style="text-align:center"> |
− | <div class="cpleft">
| + | <img src="https://static.igem.org/mediawiki/parts/e/e2/TT01_2.gif" class="img-center" style="width:20%;" /> |
− | <p class="kuvateksti">
| + | <div class="cpleft"> |
− | Figure 10 Circular representation of the <i>P. luminescens </i>genome. Copyright 2003, Nature Publishing Group
| + | <p class="kuvateksti"> Figure 9 Caterpillars infected with nematodes carrying symbiotic Photorhabdus luminescens2. Copyright 2003, Nature Publishing Group </p> |
− | </p>
| + | </div> |
− | </div>
| + | </div> |
− | <h3>TOXIN PROTEIN IN <i>P. luminescens TT01</i></h3>
| + | </div> |
− | <p class="p1"> Numerous toxins as there are in the genome of <i>P. luminescens TT01</i>, many of them have never been studied. Moreover, many small-molecule toxins are regulated by complex gene cluster, which makes it difficult to express in other standardized hosts, for instance <i>Escherichia coli. </i>Hence, on account of cost and safety, we chose four types of single-gene regulated toxic protein, tcdA1, tcdB1, Plu0840 and Plu1537, instead of small molecules because the former is easier to manipulate and less risky to the environment. </p>
| + | <p class="p1"> The whole genome of strain TT01, which has been sequenced in 2003, is predicted to encode 4839 kinds of protein<i>(12)</i>. And many of them are toxic proteins, most of which remain functionally unclear. Although they are toxic to insects and many other bacteria, <i> Photorhabdus luminescens </i> belongs to Risk Group 1 according to DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen) and has no toxic effect on human being at all. More than 50 years of field application of nematodes for controlling insect pests also showed that EN and their symbiotic bacteria ( <i> Photorhabdus luminescens </i> ) are safe to human and EN-based bio-pesticides were exempted from registration in many countries, including USA and all European countries <i>(13)</i>. </p> |
− | <h3>tcdA1: PORE FORMING PROTEIN of Tc TOXIN FAMILY</h3>
| + | <div class="row"> |
− | <p class="p1">The most remarkable toxin family till now is the Tc family, which are widely distributed among different gram-negative and gram-positive bacteria. </p>
| + | <div class="col-md-12" style="text-align:center"> |
− | <div class="col-md-12 feat-right" style="text-align:center">
| + | <img src="https://static.igem.org/mediawiki/parts/1/12/TT01.gif" class="img-center" style="width:40%;" /> |
− | <img src="https://static.igem.org/mediawiki/parts/1/17/TcdA1.png" class="img-center" style="width:60%;"></img> | + | <div class="cpleft"> |
− | <div class="cpleft">
| + | <p class="kuvateksti"> Figure 10 Circular representation of the <i> P. luminescens </i> genome. Copyright 2003, Nature Publishing Group </p> |
− | <p class="kuvateksti">
| + | </div> |
− | Figure 11 Structures of the TcA prepore and pore complex2. Copyright 2014, Nature Publishing Group
| + | </div> |
− | </p>
| + | </div> |
− | </div>
| + | <h3> TOXIN PROTEIN IN <i> P. luminescens </i> TT01 </h3> |
− | <p class="p1">Tcs are composed of TcA, TcB, and TcC. TcA is supposed to perforate the membrane by forming channel outside-in and translocating the toxic enzymes into the host. Meanwhile the TcB and TcC cooperate with a syringe-like mechanism during membrane insertion(14).</p>
| + | <p class="p1"> Numerous toxins as there are in the genome of <i> P. luminescens </i> TT01, many of them have never been studied. Moreover, many small-molecule toxins are regulated by complex gene cluster, which makes it difficult to express in other standardized hosts, for instance <i> Escherichia coli. </i> Hence, on account of cost and safety, we chose four types of single-gene regulated toxic protein, TcdA1, TcdB1, Plu0840 and Plu1537, instead of small molecules because the former is easier to manipulate and less risky to the environment. </p> |
− | <p class="p1">In a 2008 study, researchers expressed tcdA1 and tcdB1 in <i><i>Enterobacter cloacae </i> </i>and fed the termites with <i>E. cloacae</i> to control termites(15). Inspired by their experiment, we chose to express tcdA1 (Uniprot: Q7N7Y9_PHOLL) and tcdB1(Uniprot: Q7N7Z0_PHOLL) to kill termites. For more details, please go to parts 的网页链接</p>
| + | <h3> tcdA1: PORE FORMING PROTEIN of Tc TOXIN FAMILY </h3> |
− | <h3>Plu1537: Bt HOMOLOGOUS TOXIC PROTEIN</h3> | + | <p class="p1"> The most remarkable toxin family till now is the Tc family, which are widely distributed among different gram-negative and gram-positive bacteria. </p> |
− | <p class="p1">The exact function of Plu1537 is still unclear, but a research in 2009 indicated that Plu1537 “had insecticidal activity against Galleria larvae”(16). </p>
| + | <div class="row"> |
− | <p class="p1">Judging that the Plu1537 protein has 30% predicted amino acid sequence similarity to a 13.6 kDa insecticidal crystal protein cry34Ab1(figure 12) in<i> Bacillus thuringiensis </i>(Uniprot: Q939T0_BACTU), which belongs to Bt crystal protein family, it may have similar toxic effect with cry34Ab1 Bt protein.</p>
| + | <div class="col-md-12" style="text-align:center"> |
− | <p class="p1">Bt protein may be the most well-known toxic protein till now. It is widely used in transgene plants to kill the larvae of worm. It also “interacts with membranes to form pores”(17). And there are abundant evidences to ensure the safety of Bt protein(更详细?). </p>
| + | <img src="https://static.igem.org/mediawiki/2015/0/0b/ZJU-China_Background2.jpg" class="img-center" style="width:60%;" /> |
− | <div class="col-md-12 feat-right" style="text-align:center">
| + | <div class="cpleft"> |
− | <img src="https://static.igem.org/mediawiki/parts/1/13/TcdA1_1.jpg" class="img-center" style="width:60%;"></img> | + | <p class="kuvateksti"> Figure 11 Structures of the TcA prepore and pore complex2. Copyright 2014, Nature Publishing Group </p> |
− | <div class="cpleft">
| + | </div> |
− | <p class="kuvateksti">
| + | </div> |
− | Figure 12 Structures of the cry34Ab1 protein2. Copyright 2014, Worldwide Protein Data Bank
| + | </div> |
− | </p>
| + | <p class="p1"> Tcs are composed of TcA, TcB, and TcC. TcA is supposed to perforate the membrane by forming channel outside-in and translocating the toxic enzymes into the host. Meanwhile the TcB and TcC cooperate with a syringe-like mechanism during membrane insertion(14). </p> |
− | </div>
| + | <p class="p1"> In a 2008 study, researchers expressed tcdA1 and tcdB1 in <i> Enterobacter cloacae </i> and fed the termites with <i> E. cloacae </i> to control termites<i>(15)</i>. Inspired by their experiment, we chose to express tcdA1 (Uniprot: Q7N7Y9_PHOLL) and tcdB1(Uniprot: Q7N7Z0_PHOLL) to kill termites. For more details, please go to <a href="https://2015.igem.org/Team:ZJU-China/Parts" title="part page"> parts </a> </p> |
− | <p class="p1">We have successfully cloned the<i> plu1537</i> gene and expressed the Plu1537 toxin protein in<i> E.coli</i> <i>BL21(DE3)</i>, for more details, please go to </p>
| + | |
− | <h3>Plu0840: ENTEROTOXIN Ast HOMOLOGOUS PROTEIN</h3>
| + | |
− | <p class="p1">The exact function of Plu0840 is also unclear. A 2007 study confirmed that Plu0840 had weak oral toxicity against two kinds of moth (<i>S. litura and S. exigua</i>)(13). </p>
| + | <h3> Plu1537: Bt HOMOLOGOUS TOXIC PROTEIN </h3> |
− | <p class="p1">Sequence analysis showed that the plu0840 in the P. luminescens TT01 genome has 55% sequence identity with an enterotoxin Ast from Aeromonas hydrophila, therefore may play a similar role. (see figure 13)</p>
| + | <p class="p1"> The exact function of Plu1537 is still unclear, but a research in 2009 indicated that Plu1537 had insecticidal activity against Galleria larvae <i>(16)</i>. </p> |
− | <div class="col-md-12 feat-right" style="text-align:center"> | + | <p class="p1"> Judging that the Plu1537 protein has 30% predicted amino acid sequence similarity to a 13.6 kDa insecticidal crystal protein cry34Ab1(figure 12) in <i> Bacillus thuringiensis </i> (Uniprot: Q939T0_BACTU), which belongs to Bt crystal protein family, it may have similar toxic effect with cry34Ab1 Bt protein. </p> |
− | <img src="https://static.igem.org/mediawiki/parts/5/5f/Plu0840_homologous.png" class="img-center" style="width:60%;"></img> | + | <p class="p1"> Bt protein may be the most well-known toxic protein till now. It is widely used in transgene plants to kill the larvae of worm. It also “interacts with membranes to form pores”(17). And there is abundant evidence to ensure the safety of Bt protein. </p> |
− | <div class="cpleft">
| + | <div class="row"> |
− | <p class="kuvateksti">
| + | <div class="col-md-12" style="text-align:center"> |
− | Figure 13 Homologous alignment result of toxic protein Plu0840. Copyright 2014, Worldwide Protein Data Bank
| + | <img src="https://static.igem.org/mediawiki/parts/6/6b/Bt1.png" class="img-center" style="width:60%;" /> |
− | </p>
| + | <div class="cpleft"> |
− | </div>
| + | <p class="kuvateksti"> Figure 12 Structures of the Cry34Ab1 protein2. Copyright 2014, Worldwide Protein Data Bank </p> |
− | <p class="p1">In 2001, researchers studied the function of enterotoxin Ast from Aeromonas hydrophila, concluded that it played an important role in A. hydrophila-induced gastroenteritis in a mouse model(18). </p>
| + | </div> |
− | <p class="p1"> We have successfully cloned the <i>plu0840</i> gene and expressed he Plu0840 toxin protein in<i> E.coli</i> <i>BL21(DE3)</i>, for more details, please go to</p>
| + | </div> |
− | <div class="col-md-12 feat-right" style="text-align:center">
| + | </div> |
− | <img src="https://static.igem.org/mediawiki/parts/4/4a/Circuits.jpg" class="img-center" style="width:60%;"></img> | + | <p class="p1"> We have successfully cloned the plu1537 gene and expressed the Plu1537 toxin protein in <i> E.coli </i>BL21 (DE3), for more details, please go to </p> |
− | <div class="cpleft">
| + | <h3> Plu0840: ENTEROTOXIN Ast HOMOLOGOUS PROTEIN </h3> |
− |
| + | <p class="p1"> The exact function of Plu0840 is also unclear. A 2007 study confirmed that Plu0840 had weak oral toxicity against two kinds of moth ( <i> S. litura and S. exigua </i> )<i>(13)</i>. </p> |
− | </div>
| + | <p class="p1"> Sequence analysis showed that the plu0840 in the P. luminescens TT01 genome has 55% sequence identity with an enterotoxin Ast from Aeromonas hydrophila, therefore may play a similar role. (see figure 13) </p> |
− | <h3>CIRCUITS DESIGN</h3>
| + | <div class="row"> |
− | <p class="p1"> As displayed in figure 14, we have constructed three devices to express corresponding toxic proteins, plu1537 (BBa_K1668010), plu0840 (BBa_K1668009) and tcdA1 (BBa_K1668008) (注:parts name超链接到parts页面 </p>
| + | <div class="col-md-12" style="text-align:center"> |
− | <ul>
| + | <img src="https://static.igem.org/mediawiki/parts/5/5f/Plu0840_homologous.png" class="img-center" style="width:60%;" /> |
− | <li> <a href="http://parts.igem.org/Part:BBa_K1668010"> BBa_K1668010 </a> </li>
| + | <div class="cpleft"> |
− | <li> <a href="http://parts.igem.org/Part:BBa_K1668009"> BBa_K1668009 </a> </li>
| + | <p class="kuvateksti"> Figure 13 Homologous alignment result of toxic protein Plu0840. Copyright 2014, Worldwide Protein Data Bank </p> |
− | <li> <a href="http://parts.igem.org/Part:BBa_K1668008"> BBa_K1668008 </a> </li>
| + | </div> |
− | <li> <a href="http://parts.igem.org/Part: BBa_I0500"> BBa_I0500 </a> </li>
| + | </div> |
− | <li> <a href="http://parts.igem.org/Part: BBa_B0034"> BBa_B0034 </a> </li>
| + | </div> |
− | <li> <a href="http://parts.igem.org/Part:BBa_K1668011)"> BBa_K1668011 </a> </li>
| + | <p class="p1"> In 2001, researchers studied the function of enterotoxin Ast from Aeromonas hydrophila, concluded that it played an important role in A. hydrophila-induced gastroenteritis in a mouse model(18). </p> |
− | </ul>
| + | <p class="p1"> We have successfully cloned the <i> plu0840 </i> gene and expressed he Plu0840 toxin protein in <i> E.coli </i> BL21 (DE3) , for more details, please go to the next page. </p> |
− | <h3>PROMOTER: pBad(BBa_I0500)</h3>
| + | <div class="row"> |
− | <p class="p1">We chose arabinose inducible promoter pBad (BBa_I0500) because it’s not only of medium strength with arabinose up to certain concentration, but also have little leakage. Moreover, the pBad promoter is repressed by glucose, giving the expression more controllability. In order to promote expression, we chose one of the strongest RBS in Parts Registry (BBa_B0034). </p>
| + | <div class="col-md-12" style="text-align:center"> |
− | <p class="p1">BACOBONE: pSB1C3</p>
| + | <img src="https://static.igem.org/mediawiki/parts/7/74/ZJU-CHINA_circuits.png" class="img-center" style="width:60%;" /> |
− | <h3>EXPRESSION:</h3>
| + | <div class="cpleft"> |
− | <p class="p1">We adopted tandem expression of toxin and reporter mCherry (BBa_K1668011) to roughly judge whether toxin is expressed. </p>
| + | <p class="kuvateksti">Figure 14 The circuits constructed for toxic protein expression</p> |
− | <p class="p1">We use <i>E.coli</i> <i>DH5α</i> to get plenty recombinants in high quality and quantity. Then we transform the positive recombinants into <i>E.coli</i> <i>BL21(DE3)</i> for high-quality expression.</p>
| + | </div> |
− | <p class="p1">To see the results of expression and toxic experiment on termites, please go to (results页面)</p>
| + | </div> |
− | <h3>CIRCUITS CONSTRUCTION</h3>
| + | </div> </h3> |
− | <p class="p1">STEP ONE: PCR</p>
| + | <h3> CIRCUITS DESIGN </h3> |
− | <p class="p1">We amplify the target gene from the genome of <i>S.avermitilisi</i> by PCR. We also clone the arabinose inducible promoter pBad from Part Registry. The primer and PCR program can be seen in our biobrick pages(超链接到biobrick).</p>
| + | <p class="p1"> As displayed in figure 14, we have constructed three devices to express corresponding toxic proteins, plu1537 (BBa_K1668010), plu0840 (BBa_K1668009) and tcdA1 (BBa_K1668008) </p> |
− | <br>
| + | <ul> |
− | <p class="p1"> STEP TWO: BACKBONE DIGESTION</p>
| + | <li> <a href="http://parts.igem.org/Part:BBa_K1668010" title="go to part page"> BBa_K1668010 </a> </li> |
− | <p class="p1"> We digest the part BBa_J06702, mCherry with RBS in front and double terminator behind, with restriction enzyme XbaI to make a linearized backbone. </p>
| + | <li> <a href="http://parts.igem.org/Part:BBa_K1668009" title="go to part page"> BBa_K1668009 </a> </li> |
− | <br>
| + | <li> <a href="http://parts.igem.org/Part:BBa_K1668008" title="go to part page"> BBa_K1668008 </a> </li> |
− | <p class="p1">STEP THREE: SCARLESS ASSEMBLY</p>
| + | <li> <a href="http://parts.igem.org/Part: BBa_I0500" title="go to part page"> BBa_I0500 </a> </li> |
− | <p class="p1"> We use the MultiS_one step cloning kit of Vazyme company to assemble the target gene and backbone. The mechanism is showed in figure 15. </p>
| + | <li> <a href="http://parts.igem.org/Part: BBa_B0034" title="go to part page"> BBa_B0034 </a> </li> |
− | <p class="p1">For more detailes about scarless assembly and any other protocols, please go to(超链接到protocol)</p>
| + | <li> <a href="http://parts.igem.org/Part:BBa_K1668011)" title="go to part page"> BBa_K1668011 </a> </li> |
− | <div class="col-md-12 feat-right" style="text-align:center"> | + | </ul> |
− | <img src="https://static.igem.org/mediawiki/parts/6/64/Scarless_cloning.jpg" class="img-center" style="width:60%;"></img> | + | <h3> PROMOTER: pBad(BBa_I0500) </h3> |
− | <div class="cpleft">
| + | <p class="p1"> We chose arabinose inducible promoter pBad (BBa_I0500) because it's not only of medium strength with arabinose up to certain concentration, but also have little leakage. Moreover, the pBad promoter is repressed by glucose, giving the expression more controllability. In order to promote expression, we chose one of the strongest RBS in Parts Registry (BBa_B0034). </p> |
− | <p class="kuvateksti">
| + | <p class="p1"> BACOBONE: pSB1C3 </p> |
− | Figure 15 the mechanism of scarless cloning
| + | <h3> EXPRESSION: </h3> |
− | </p>
| + | <p class="p1"> We adopted tandem expression of toxin and reporter mCherry (BBa_K1668011) to roughly judge whether toxin is expressed. </p> |
− | </div>
| + | <p class="p1"> We use <i> E.coli </i> <i> DH5α </i> to get plenty recombinants in high quality and quantity. Then we transform the positive recombinants into <i> E.coli </i> <i> BL21 (DE3) </i> for high-quality expression. </p> |
− | <h2>Reference</h2>
| + | <p class="p1"> To see the results of expression and toxic experiment on termites, please go to <a href="https://2015.igem.org/Team:ZJU-China/Results">results</a></p> |
| + | <h3> CIRCUITS CONSTRUCTION </h3> |
| + | <p class="p1"> STEP ONE: PCR </p> |
| + | <p class="p1"> We amplify the target gene from the genome of <i> S.avermitilisi </i> by PCR. We also clone the arabinose inducible promoter pBad from Part Registry. The primer and PCR program can be seen in our <a href="#biobrick" title="more about biobrick"> biobrick pages </a> . </p> |
| + | <br /> |
| + | <p class="p1"> STEP TWO: BACKBONE DIGESTION </p> |
| + | <p class="p1"> We digest the part BBa_J06702, mCherry with RBS in front and double terminator behind, with restriction enzyme XbaI to make a linearized backbone. </p> |
| + | <br /> |
| + | <p class="p1"> STEP THREE: SCARLESS ASSEMBLY </p> |
| + | <p class="p1"> We use the MultiS_one step cloning kit of Vazyme company to assemble the target gene and backbone. The mechanism is showed in figure 15. </p> |
| + | <p class="p1"> For more details about scarless assembly and any other protocols, please go to <a href="#protocol" title="more about protocol"> protocol </a> </p> |
| + | <div class="row"> |
| + | <div class="col-md-12" style="text-align:center"> |
| + | <img src="https://static.igem.org/mediawiki/parts/6/64/Scarless_cloning.jpg" class="img-center" style="width:60%;" /> |
| + | <div class="cpleft"> |
| + | <p class="kuvateksti"> Figure 15 the mechanism of scarless cloning </p> |
| + | </div> |
| + | </div> |
| + | </div> |
| + | </div> |
| + | <h2> Reference </h2> |
| <p class="p1"> 1. X. Zhang et al., APPL MICROBIOL BIOT 72, 986 (2006-09-27, 2006). </p> | | <p class="p1"> 1. X. Zhang et al., APPL MICROBIOL BIOT 72, 986 (2006-09-27, 2006). </p> |
| <p class="p1"> 2. H. Ikeda, K. Shin-ya, S. Omura, J IND MICROBIOL BIOT 41, 233 (2014). </p> | | <p class="p1"> 2. H. Ikeda, K. Shin-ya, S. Omura, J IND MICROBIOL BIOT 41, 233 (2014). </p> |
Line 206: |
Line 244: |
| <p class="p1"> 4. P. MAZODIER, R. PETTER, C. THOMPSON, J BACTERIOL 171, 3583 (1989). </p> | | <p class="p1"> 4. P. MAZODIER, R. PETTER, C. THOMPSON, J BACTERIOL 171, 3583 (1989). </p> |
| <p class="p1"> 5. F. Flett, V. Mersinias, C. P. Smith, FEMS MICROBIOL LETT 155, 223 (1997). </p> | | <p class="p1"> 5. F. Flett, V. Mersinias, C. P. Smith, FEMS MICROBIOL LETT 155, 223 (1997). </p> |
− | <p class="p1"> 6. 孙宁, 浙江大学 (2013). </p> | + | <p class="p1"> 6. Ning Sun, BIOCHEM MOL BIOL EDU (2013). </p> |
| <p class="p1"> 7. D. J. MACNEIL, J BACTERIOL 170, 5607 (1988). </p> | | <p class="p1"> 7. D. J. MACNEIL, J BACTERIOL 170, 5607 (1988). </p> |
| <p class="p1"> 8. R. K. Holmes, M. G. Jobling, (1996-01-19, 1996). </p> | | <p class="p1"> 8. R. K. Holmes, M. G. Jobling, (1996-01-19, 1996). </p> |
Line 224: |
Line 262: |
| <br /> | | <br /> |
| <header> | | <header> |
− | Toxin manufacture
| + | Toxin manufacture |
| </header> | | </header> |
| <ul id="nav2"> | | <ul id="nav2"> |
| <br /> | | <br /> |
| <br /> | | <br /> |
− | <li><a href="#pos1">Introduction</a></li> | + | <li> <a href="#pos1"> Introduction </a> </li> |
− | <br />
| + | |
− | <br />
| + | |
| <br /> | | <br /> |
− | <li><a href="#pos2">Avermectin manufacture</a></li>
| |
− | <br />
| |
− | <br />
| |
| <br /> | | <br /> |
− | <li><a href="#pos3">Toxic protein manufacture</a></li> | + | <br /> |
| + | <li> <a href="#pos2"> Avermectin manufacture </a> </li> |
| + | <br /> |
| + | <br /> |
| + | <br /> |
| + | <li> <a href="#pos3"> Toxic protein manufacture </a> </li> |
| <br /> | | <br /> |
| </ul> | | </ul> |
Line 247: |
Line 285: |
| <br /> | | <br /> |
| <header> | | <header> |
− | Project
| + | Project |
| </header> | | </header> |
| <ul id="nav"> | | <ul id="nav"> |
| <br /> | | <br /> |
| <br /> | | <br /> |
− | <li><a href="https://2015.igem.org/Team:ZJU-China/Project">Over View</a></li> | + | <li> <a href="https://2015.igem.org/Team:ZJU-China/Project"> Over View </a> </li> |
| <br /> | | <br /> |
− | <li><a href="https://2015.igem.org/Team:ZJU-China/Project/Termite_Issue">Termite Issue</a></li> | + | <li> <a href="https://2015.igem.org/Team:ZJU-China/Project/Termite_Issue"> Termite Issue </a> </li> |
| <br /> | | <br /> |
− | <li><a href="https://2015.igem.org/Team:ZJU-China/Design/Toxinmanufacture">Toxins</a></li> | + | <li> <a href="https://2015.igem.org/Team:ZJU-China/Design/Toxinmanufacture"> Toxins </a> </li> |
| <br /> | | <br /> |
− | <li><a href="https://2015.igem.org/Team:ZJU-China/Design/CNC">CNC</a></li> | + | <li> <a href="https://2015.igem.org/Team:ZJU-China/Design/CNC"> CNC </a> </li> |
| <br /> | | <br /> |
− | <li><a href="https://2015.igem.org/Team:ZJU-China/Design/Termites">Termites</a></li> | + | <li> <a href="https://2015.igem.org/Team:ZJU-China/Design/Termites"> Termites </a> </li> |
| <br /> | | <br /> |
− | <li><a href="https://2015.igem.org/Team:ZJU-China/Results">Results</a></li> | + | <li> <a href="https://2015.igem.org/Team:ZJU-China/Project/Protocol"> Protocol</a> </li> |
− | <br />
| + | |
− | <li><a href="https://2015.igem.org/Team:ZJU-China/Parts">Parts</a></li>
| + | |
| <br /> | | <br /> |
| </ul> | | </ul> |
| </aside> | | </aside> |
− | <br />
| |
− | <br />
| |
− | <br />
| |
− | <br />
| |
| <br /> | | <br /> |
− | <!----> | + | <br /> |
| + | <br /> |
| + | <br /> |
| + | <br /> |
| + | <!----> |
| </body> | | </body> |
| </html> | | </html> |
− | {{ZJU-China/mascot}} | + | {{ZJU-China/mascot}} {{:Team:ZJU-China/template/foot}} |
− | {{:Team:ZJU-China/template/foot}} | + | |