Difference between revisions of "Team:Toulouse/Description/Regulation"

 
(28 intermediate revisions by 6 users not shown)
Line 25: Line 25:
 
<!-- ################################################################################################ -->
 
<!-- ################################################################################################ -->
 
<!-- ################################################################################################ -->
 
<!-- ################################################################################################ -->
<div class="wrapper row0 bgded" style="background-image:url(' https://static.igem.org/mediawiki/2015/f/f5/TLSE_bg_1.png')">
+
<div class="wrapper row0 bgded" style="background-image:url(' https://static.igem.org/mediawiki/2015/b/b9/P1160195.JPG')">
 
   <div class="shout">  
 
   <div class="shout">  
 
     <!-- ################################################################################################ -->
 
     <!-- ################################################################################################ -->
 
     <div class="shout-content clear">
 
     <div class="shout-content clear">
 
       <div class="maintitle">
 
       <div class="maintitle">
     <center> <h3>Regulation</h3> </center>
+
     <center> <h3>Regulate</h3> </center>
 
     </div>
 
     </div>
  <center><img src=" https://static.igem.org/mediawiki/2015/5/57/TLSE_Attract_BG.png"></center>
+
  <center><img src="https://static.igem.org/mediawiki/2015/7/7b/TLSE_Ethics_Engineeredcoli.png"></center>
 
    
 
    
 
</div>
 
</div>
Line 46: Line 46:
 
<br>
 
<br>
 
   <main class="container clear">  
 
   <main class="container clear">  
 +
 +
  <div class="title">
 +
      <h3>Content</h3>
 +
    </div>
 +
<center>
 +
    <div id="breadcrumb" class="clear" style="float: center;" >
 +
  <ul>
 +
        <li><a href="#part1">- Regulate</i></a></li>
 +
        <li><a href="#part2">- Light and Dark conditions</a></li>
 +
      </ul>
 +
    </div>
 +
 +
<hr style="width:66%;height:1px;border:none;color:rgba(29, 5, 79, 1);background-color:rgba(29, 5, 79, 1);">
 +
</center>
 
      
 
      
 
     <!-- container body -->
 
     <!-- container body -->
Line 56: Line 70:
  
 
    <!-- FIRST PARAGRAPH -->
 
    <!-- FIRST PARAGRAPH -->
<center><div class="title" >    
+
<center><div class="title" id="part1">    
<h3>Regulation</h3>
+
<h3>Regulate</h3>
 
</div></center>
 
</div></center>
  
Line 63: Line 77:
 
         <p align="justify" style="font-size:15px;">
 
         <p align="justify" style="font-size:15px;">
 
In order to respect the bee life cycle  
 
In order to respect the bee life cycle  
and to optimize our solution fighting
+
and to optimize our solution to limit
Varroa destructor infestation of domestic
+
Varroa destructor infestation, we have integrated a regulation  
bees, we have integrated a regulation  
+
system to our genetic construction, in the form of <b>a NOT logic gate controled by a day/night (or circadian) switch</b>.  
system to our genetic construction: <b>a day/night (or circadian) switch</b>.  
+
In daytime, the bees go back and forth at the beehive entrance, bringing varroas inside or outside the hive.   
In daytime, the bees are working outside to pollinate,
+
In nighttime, bees stay in the hive. Hence,  
and so, go back and forth at the beehive entrance, bringing potentially varroas inside the hive.   
+
we want our <b>ApiColi</b> <i>E. coli</i> strain to produce either butyric acid in daytime to  
In nighttime, bees are less active. Hence,  
+
attract varroa into the physical trap, or formic acid to kill it by night.
we want our <b>ApiColi</b> to produce either butyric acid in daytime to  
+
attract varroa toward a physical trap, or formic acid to kill it by night.
+
  
 
</p>
 
</p>
 
       </div>
 
       </div>
 
<center>  
 
<center>  
  <img src="https://static.igem.org/mediawiki/2015/f/f2/TLSE_regulation_schema.png" style="width:70%">
+
  <img src="https://static.igem.org/mediawiki/2015/f/f2/TLSE_regulation_schema.png" style="width:62%">
 
  <p class="legend"></p>
 
  <p class="legend"></p>
 
  </center>
 
  </center>
Line 85: Line 97:
 
 
  
<div class="group center">
+
<div class="group center" id="lightsensor">
 
<p align="justify" style="font-size:15px;">
 
<p align="justify" style="font-size:15px;">
  
We based our reflexion on a light response system built in E. coli [1]
+
We based our reflexion on a light response system built in <i>E. coli</i> [1]
 
The genetic system has been designed to be switched on and off in response to light [2].
 
The genetic system has been designed to be switched on and off in response to light [2].
 
In our project, we have further improved the  
 
In our project, we have further improved the  
 
process in order to control two  
 
process in order to control two  
alternative genetic programs depending on light.
+
alternative genetic programs depending on the light presence.
 
<br>
 
<br>
 
<br>
 
<br>
Line 103: Line 115:
 
the <b>red light response domain of Cph1</b>  
 
the <b>red light response domain of Cph1</b>  
 
(a phytochrome-like protein  
 
(a phytochrome-like protein  
from Synechocystis sp PCC 6803) and the  
+
from <i>Synechocystis</i> sp PCC 6803) and the  
 
<b>intracellular domain of the histidin kinase EnvZ</b>  
 
<b>intracellular domain of the histidin kinase EnvZ</b>  
 
(an osmolarity sensor protein) from <i>E. coli.</i></b>
 
(an osmolarity sensor protein) from <i>E. coli.</i></b>
Line 111: Line 123:
 
</div>
 
</div>
  
<div class="subtitle">
+
<div class="subtitle" id="part2">
 
<h3>Light and Dark conditions</h3>
 
<h3>Light and Dark conditions</h3>
 
</div>
 
</div>
Line 117: Line 129:
 
<div class="group center">
 
<div class="group center">
 
<p align="justify" style="font-size:15px;">
 
<p align="justify" style="font-size:15px;">
When there is no light, Cph8 autophosphorylates its EnvZ intracellular domain while consuming one molecule of ATP. The phosphoryl group will be subsequently transferred to the transcription factor OmpR, which then, will upregulate genes expressed from the OmpC promoter.
+
Whitout light, Cph8 <b>autophosphorylates</b> its EnvZ intracellular domain while consuming one molecule of ATP. The phosphoryl group will be subsequently transfered to the <b>transcription factor OmpR</b>, which then, will upregulate genes expressed from the <b>P<sub>OmpC</sub> promoter</b> .
<br>
+
In contrast, when light is around, PCB prevents the Cph8 autophosphorylation, OmpR will not be activated and the genes under P<sub>OmpC</sub> not expressed.
+
 
</p>
 
</p>
 
</div>
 
</div>
 +
<center><img src="https://static.igem.org/mediawiki/2015/f/f1/TLSE_night_regu.png" style="width:55%"></center>
 +
 +
<div class="group center">
 +
<p align="justify" style="font-size:15px;">
 +
In contrast, with light, <b>PCB prevents</b> the Cph8 autophosphorylation. OmpR will not be activated and the genes under P<sub>OmpC</sub> will not be expressed.
 +
</p>
 +
</div>
 +
<center><img src="https://static.igem.org/mediawiki/2015/e/e5/TLSE_day_reg.png" style="width:55%"></center>
  
<center><img src="https://static.igem.org/mediawiki/2015/f/f3/Regulation2.gif" style="width:70%;"></center>
 
  
 
<div class="group center">
 
<div class="group center">
 
<p align="justify" style="font-size:15px;">
 
<p align="justify" style="font-size:15px;">
This circadian switch is further improved by integrating into the regulation circuitry the phage lambda CI repressor as well as the bacterial LacI repressor. With such a design, in daytime, ApiColi will synthesize butyric acid (polycistron B) while repressing the synthesis of formic acid (polycistron A) and <I>vice versa</I> in nighttime. Without light, CI produced from the first gene of the polycistronic A, will repress the P<sub>Lac</sub> promoter, preventing the expression of the polycistronic B genes whose first gene codes for the LacI repressor. In daytime, polycistronic A genes will not be expressed, there will be not CI repressor to prevent the transcription of the polycistronic B genes. Thus, butyrate will be produced and the LacI repressor will repress the polycistronic A genes.</p>
+
This circadian switch is further improved by integrating a NOT logic gate into the regulation circuitry. This is achieved using the <b>phage lambda cI repressor</b> (<a target="_blank" href="http://parts.igem.org/Part:BBa_K1587006">BBa_K1587006</a>) as well as the bacterial <b>LacI repressor</b>. With such a design, in daytime, ApiColi will synthesize <b>butyric acid</b> (polycistron B) while repressing the synthesis of <b>formic acid</b> (polycistron A) and <I>vice versa</I> in nighttime. Without light, cI produced from the first gene of the polycistronic A, will repress the P<sub>Lac</sub> promoter, preventing the expression of the polycistronic B genes whose first gene codes for the LacI repressor.  
 +
In daytime, polycistronic A genes will not be expressed, there will be no CI repressor to prevent the transcription of the polycistronic B genes. Thus, butyrate will be produced and the LacI repressor will repress the polycistronic A genes.</p>
 
</div>
 
</div>
  
 +
 +
 +
<center><img src="https://static.igem.org/mediawiki/2015/f/f3/Regulation2.gif" style="width:60%;"></center>
 +
 +
<center>
 +
<div class="title">
 +
<h3>READ MORE</h3>
 +
</div> </center>
 +
 +
<div class="group center">
 +
<div style="width:20%;">
 +
<a href="https://2015.igem.org/Team:Toulouse/Description/Attract">
 +
<div class="title">
 +
<h3>Attract</h3>
 +
</div>
 +
</a>
 +
</div>
 +
<div style="width:20%;">
 +
<a href="https://2015.igem.org/Team:Toulouse/Description/Eradicate">
 +
<div class="title">
 +
<h3>Eradicate</h3>
 +
</div>
 +
</a>
 +
</div>
 +
<div style="width:20%;">
 +
<a href="https://2015.igem.org/Team:Toulouse/Description/Regulation">
 +
<div class="title">
 +
<h3>Regulation</h3>
 +
</div>
 +
</a>
 +
</div>
 +
<div style="width:20%;">
 +
<a href="https://2015.igem.org/Team:Toulouse/Design">
 +
<div class="title">
 +
<h3>Device: TrApiColi</h3>
 +
</div>
 +
</a>
 +
</div>
 +
<div style="width:20%;">
 +
<a href="https://2015.igem.org/Team:Toulouse/Results">
 +
<div class="title">
 +
<h3>Results</h3>
 +
</div>
 +
</a>
 +
</div>
 +
</div>
 
   </main>
 
   </main>
 
</div>
 
</div>
Line 149: Line 213:
 
<ul>
 
<ul>
 
<li>
 
<li>
[1] 2005 Nature, levskaya, synthetic biology: engineering <i>E. coli</i> to see light
+
[1] Levskaya A, Chevalier AA, Tabor JJ, Simpson ZB, Lavery LA, Levy M, Davidson EA, Scouras A, Ellington AD, Marcotte EM & Voigt CA (2005) Synthetic biology: Engineering <i>Escherichia coli</i> to see light. Nature 438: 441–442
 
</li>
 
</li>
  
 
<li>
 
<li>
[2] 2013 PLOS, lee switchable gene expression in <i>E. coli</i> using a miniaturized photobioreactor</li>
+
[2] Lee JM, Lee J, Kim T & Lee SK (2013) Switchable Gene Expression in <i>Escherichia coli</i> Using a Miniaturized Photobioreactor. PLoS ONE 8: e52382
 
+
 
<li>
 
<li>
[3] PNAS, 2001, gabetta, Genetic engineering of phytochrome biosynthesis in bacteria
+
[3] Gambetta GA & Lagarias JC (2001) Genetic engineering of phytochrome biosynthesis in bacteria. PNAS 98: 10566–10571
 
</li>
 
</li>
 
</ul>
 
</ul>

Latest revision as of 19:23, 18 September 2015

iGEM Toulouse 2015

Regulate


Content


Regulate

In order to respect the bee life cycle and to optimize our solution to limit Varroa destructor infestation, we have integrated a regulation system to our genetic construction, in the form of a NOT logic gate controled by a day/night (or circadian) switch. In daytime, the bees go back and forth at the beehive entrance, bringing varroas inside or outside the hive. In nighttime, bees stay in the hive. Hence, we want our ApiColi E. coli strain to produce either butyric acid in daytime to attract varroa into the physical trap, or formic acid to kill it by night.

We based our reflexion on a light response system built in E. coli [1] The genetic system has been designed to be switched on and off in response to light [2]. In our project, we have further improved the process in order to control two alternative genetic programs depending on the light presence.

The core of the light sensor is composed of the membrane proteins PCB and Cph8. PCB is a chromophore (phycocyabilin) originating from cyanobacteria Synechocystis sp. PCC 6803. Cph8 is a hybrid protein between the red light response domain of Cph1 (a phytochrome-like protein from Synechocystis sp PCC 6803) and the intracellular domain of the histidin kinase EnvZ (an osmolarity sensor protein) from E. coli. The synthesis of PCB requires the expression of both Ho1 (heme oxygenase gene) and PcyA (biliverdin reductase gene). [3]

Light and Dark conditions

Whitout light, Cph8 autophosphorylates its EnvZ intracellular domain while consuming one molecule of ATP. The phosphoryl group will be subsequently transfered to the transcription factor OmpR, which then, will upregulate genes expressed from the POmpC promoter .

In contrast, with light, PCB prevents the Cph8 autophosphorylation. OmpR will not be activated and the genes under POmpC will not be expressed.

This circadian switch is further improved by integrating a NOT logic gate into the regulation circuitry. This is achieved using the phage lambda cI repressor (BBa_K1587006) as well as the bacterial LacI repressor. With such a design, in daytime, ApiColi will synthesize butyric acid (polycistron B) while repressing the synthesis of formic acid (polycistron A) and vice versa in nighttime. Without light, cI produced from the first gene of the polycistronic A, will repress the PLac promoter, preventing the expression of the polycistronic B genes whose first gene codes for the LacI repressor. In daytime, polycistronic A genes will not be expressed, there will be no CI repressor to prevent the transcription of the polycistronic B genes. Thus, butyrate will be produced and the LacI repressor will repress the polycistronic A genes.

READ MORE

References


  • [1] Levskaya A, Chevalier AA, Tabor JJ, Simpson ZB, Lavery LA, Levy M, Davidson EA, Scouras A, Ellington AD, Marcotte EM & Voigt CA (2005) Synthetic biology: Engineering Escherichia coli to see light. Nature 438: 441–442
  • [2] Lee JM, Lee J, Kim T & Lee SK (2013) Switchable Gene Expression in Escherichia coli Using a Miniaturized Photobioreactor. PLoS ONE 8: e52382
  • [3] Gambetta GA & Lagarias JC (2001) Genetic engineering of phytochrome biosynthesis in bacteria. PNAS 98: 10566–10571