Difference between revisions of "Template:Heidelberg/pages/overview/ribozymes"
Line 39: | Line 39: | ||
</div> | </div> | ||
<div class="row"> | <div class="row"> | ||
− | <div class="col-lg- | + | <div class="col-lg-2" style="margin-top:-20px;"> |
<div class="imagewrapper"> | <div class="imagewrapper"> | ||
<div class="imagewrapperheader"> | <div class="imagewrapperheader"> | ||
Line 63: | Line 63: | ||
</div> | </div> | ||
<div class="row"> | <div class="row"> | ||
− | <div class="col-lg- | + | <div class="col-lg-8"> |
<p class="basictext"> | <p class="basictext"> | ||
Next to the directed evolution of existing ribozymes <i>in vitro</i> selection methods<x-ref>bartel1993</x-ref> were developed to select nucleic acids with new catalytic activities from a random pool. Catalytic RNA of versatile functions arose from these methods. For instance Seelig and Jäschke selected a diels alderase ribozyme catalyzing the Diels-Alder reaction leading to the formation of a carbon-carbon bond.<x-ref>seelig1999</x-ref> Not only can <i>in vitro</i> selection methods be applied to reveal new catalytic RNA but also to select aptamers. | Next to the directed evolution of existing ribozymes <i>in vitro</i> selection methods<x-ref>bartel1993</x-ref> were developed to select nucleic acids with new catalytic activities from a random pool. Catalytic RNA of versatile functions arose from these methods. For instance Seelig and Jäschke selected a diels alderase ribozyme catalyzing the Diels-Alder reaction leading to the formation of a carbon-carbon bond.<x-ref>seelig1999</x-ref> Not only can <i>in vitro</i> selection methods be applied to reveal new catalytic RNA but also to select aptamers. | ||
</p> | </p> | ||
</div> | </div> | ||
− | <div class="col-lg- | + | <div class="col-lg-4" style="margin-top:-20px;"> |
<div class="imagewrapper"> | <div class="imagewrapper"> | ||
<div class="imagewrapperheader"> | <div class="imagewrapperheader"> |
Revision as of 20:35, 18 September 2015
Catalytic RNA – Ribozymes
In 1982 the first catalytic RNA (Ribozyme): a self-spicing intron from Tetrahymena pre-rRNA was described.
Another ribozyme that is related to the HHR is the hepatitis δ virus ribozyme (HDV).
Both of the mentioned types of ribozymes are found in satellite RNA of plant origin
Our idea of working with functional nucleic acids originated from this system. We were fascinated by the vast variety of processes that they can perform and started digging deeper into the potential of nucleic acids as tools. During this process we came across interesting systems amongst which we found the twin ribozyme (Fig. 3). Another famous hairpin-ribozyme-derived functional nucleic acid developed by Müller.
Next to the directed evolution of existing ribozymes in vitro selection methods