Difference between revisions of "Team:Kent"
Jamesaston (Talk | contribs) |
|||
(219 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{Kent}} | ||
{{KentGlobal}} | {{KentGlobal}} | ||
{{KentMenu}} | {{KentMenu}} | ||
− | |||
<html> | <html> | ||
− | + | <div class="site-wrapper"> | |
− | < | + | |
− | + | ||
− | <br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> | + | <br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> |
+ | <br><br><br><br><br><br><br><br> | ||
+ | |||
+ | |||
+ | </div> | ||
+ | <div class="site-wrapper-text" > | ||
+ | <a name="#ref"></a> <h1 align="center"> Developing Green Nanowire </h1> | ||
+ | <p align="justify" style="margin: 1%; margin-left:5%; margin-right:5%"> | ||
+ | With rapid technological advancement in the energy, electrical and computing industries there is pressure to increase processing power while downscaling circuitry, and at the same time make components and circuitry biocompatible for medical or biological applications. The recent advances in fabrication of nano-wires have fuelled the need for biocompatible wires that can interface with cellular components. Currently most electronic components use copper clad laminates, and rare earth metals, which are finite resources and require significant amount of space, energy, metals and rare resources. Nano-wires formed from proteins by bacteria provide a solution to the fabrication of a Nano-material in terms of miniaturization, improved efficiency, renewable use of energy and materials, and biocompatibilty. | ||
+ | </p> | ||
+ | |||
+ | <br><br><br> | ||
+ | |||
+ | |||
+ | </div> | ||
+ | |||
+ | <div class="site-wrapper-sub-1"> | ||
+ | <br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> | ||
+ | <br><br><br><br><br><br><br><br> | ||
+ | </div> | ||
+ | |||
+ | <div class="site-wrapper-text" > | ||
+ | </a><h1 align="center">Our Answer To Biocompatible Nanowire</h1> | ||
+ | <p align="justify" style="margin: 1%; margin-left:5%; margin-right:5%"> | ||
+ | Our amyloid nano-wire provides an alternative material and method of producing nano-wire, whilst being environmentally friendly as it is a renewable resource and can self-assemble. We utilized the amyloid forming protein, Sup35-NM, which can be exported by <i>E. coli</i> into a solution, where the protein self-assembles to form amyloid fibrils. Amyloid fibrils are well-suited for use as nanowire due to their high heat stability, mechanical properties, biocompatibility, and ease of functionalization.</p> | ||
+ | <br><br><br> | ||
+ | |||
+ | </div> | ||
+ | <div class="site-wrapper-sub-2"> | ||
+ | <br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> | ||
+ | <br><br><br><br><br></div> | ||
+ | |||
+ | <div class="site-wrapper-text" > | ||
+ | |||
+ | <h1 align="center">Future</h1> | ||
+ | <p align="justify" style="margin: 1%; margin-left:5%; margin-right:5%"> | ||
+ | With further engineering, in the future it would be possible to insert an electron carrier into the periplasm, allowing electrons from the electron transport chain to be sequestered into the amyloid nanowire directly. This could be achieved using strains of <i>E.coli</i> that allow amyloid fibres to bind to the outside of the cell at specific points. Ultimately this will allow self-powering bio-electronic devices that could be used in products such as mobile phones, energy plants that generates green bio-energy, and small self-contained batteries that generate and transport its own electricity and eliminates the need for chargers. </p> | ||
+ | <br><br><br> | ||
+ | |||
+ | </div> | ||
</div> | </div> | ||
</div> | </div> | ||
+ | <script defer="defer" type="text/javascript"></script> | ||
</html> | </html> | ||
{{KentFooter}} | {{KentFooter}} |
Latest revision as of 21:25, 18 September 2015
Developing Green Nanowire
With rapid technological advancement in the energy, electrical and computing industries there is pressure to increase processing power while downscaling circuitry, and at the same time make components and circuitry biocompatible for medical or biological applications. The recent advances in fabrication of nano-wires have fuelled the need for biocompatible wires that can interface with cellular components. Currently most electronic components use copper clad laminates, and rare earth metals, which are finite resources and require significant amount of space, energy, metals and rare resources. Nano-wires formed from proteins by bacteria provide a solution to the fabrication of a Nano-material in terms of miniaturization, improved efficiency, renewable use of energy and materials, and biocompatibilty.
Our Answer To Biocompatible Nanowire
Our amyloid nano-wire provides an alternative material and method of producing nano-wire, whilst being environmentally friendly as it is a renewable resource and can self-assemble. We utilized the amyloid forming protein, Sup35-NM, which can be exported by E. coli into a solution, where the protein self-assembles to form amyloid fibrils. Amyloid fibrils are well-suited for use as nanowire due to their high heat stability, mechanical properties, biocompatibility, and ease of functionalization.
Future
With further engineering, in the future it would be possible to insert an electron carrier into the periplasm, allowing electrons from the electron transport chain to be sequestered into the amyloid nanowire directly. This could be achieved using strains of E.coli that allow amyloid fibres to bind to the outside of the cell at specific points. Ultimately this will allow self-powering bio-electronic devices that could be used in products such as mobile phones, energy plants that generates green bio-energy, and small self-contained batteries that generate and transport its own electricity and eliminates the need for chargers.