Difference between revisions of "Template:Team:TU Eindhoven/Equipment HTML"
Line 12: | Line 12: | ||
<span class="tekst1"> | <span class="tekst1"> | ||
In the lab we used many devices to perform our experiments. Followed is a short description of each equipment. | In the lab we used many devices to perform our experiments. Followed is a short description of each equipment. | ||
+ | </span> | ||
<br /> | <br /> | ||
<br /> | <br /> | ||
Line 17: | Line 18: | ||
MiniSpin Centrifuge | MiniSpin Centrifuge | ||
</h2><br /> | </h2><br /> | ||
+ | <span class="tekst1"> | ||
The MiniSpin Centrifuge (figure 1A) is a powerful centrifuge that can accelerate up to twelve 1.5/2.0 ml Eppendorf Tubes to a maximum speed of 13,400 rpm (rcf: 12,100 x g). Balance is very important for this equipment. We used this centrifuge for several experiments, such as PCR Purification, Miniprepping, Gel Extraction and preparing samples for FACS. | The MiniSpin Centrifuge (figure 1A) is a powerful centrifuge that can accelerate up to twelve 1.5/2.0 ml Eppendorf Tubes to a maximum speed of 13,400 rpm (rcf: 12,100 x g). Balance is very important for this equipment. We used this centrifuge for several experiments, such as PCR Purification, Miniprepping, Gel Extraction and preparing samples for FACS. | ||
+ | </span> | ||
<br /> | <br /> | ||
<div id="imageText"> | <div id="imageText"> | ||
Line 40: | Line 43: | ||
</h2> | </h2> | ||
<br /> | <br /> | ||
+ | <span class="tekst1"> | ||
The Tabletop Centrifuge (figure 1B) can be used to centrifuge culture tubes. For this centrifuge, balance is also very important, just as with the MiniSpin Centrifuge. We used this centrifuge for several experiments, such as miniprepping. | The Tabletop Centrifuge (figure 1B) can be used to centrifuge culture tubes. For this centrifuge, balance is also very important, just as with the MiniSpin Centrifuge. We used this centrifuge for several experiments, such as miniprepping. | ||
+ | </span> | ||
<br /> | <br /> | ||
<br /> | <br /> | ||
Line 49: | Line 54: | ||
</h2> | </h2> | ||
<br /> | <br /> | ||
− | |||
<div id="imageText"> | <div id="imageText"> | ||
<div class="right2b"> | <div class="right2b"> | ||
<br /> | <br /> | ||
+ | <span class="tekst1"> | ||
The compact, 48-well MJ Mini thermal cycler (figure 2) is a powerful thermal cycler that has been used to perform all kinds of PCR reaction, such as digestion and ligation. 0.2 ml PCR tubes can be used. Its thermal range is 0-99°C. This thermal cycler also offers a thermal gradient technology so that you can optimize reactions for maximum efficiency and accurate quantitation with a gradient range of 35-99°C. | The compact, 48-well MJ Mini thermal cycler (figure 2) is a powerful thermal cycler that has been used to perform all kinds of PCR reaction, such as digestion and ligation. 0.2 ml PCR tubes can be used. Its thermal range is 0-99°C. This thermal cycler also offers a thermal gradient technology so that you can optimize reactions for maximum efficiency and accurate quantitation with a gradient range of 35-99°C. | ||
+ | </span> | ||
</div> | </div> | ||
Line 74: | Line 80: | ||
<span class="tekst1"> | <span class="tekst1"> | ||
<br /><br/> | <br /><br/> | ||
− | This equipment allows high-resolution scans of for example monochromatic fluorescence gels and Western Blots. We used it to make scans of all of our agarose gels and SDS PAGE gels.</span> | + | <span class="tekst1"> |
+ | This equipment allows high-resolution scans of for example monochromatic fluorescence gels and Western Blots. We used it to make scans of all of our agarose gels and SDS PAGE gels. | ||
+ | </span> | ||
</div> | </div> | ||
<img class="right2c" src="https://static.igem.org/mediawiki/2015/6/62/TU_Eindhoven_ImageQuant.png"> | <img class="right2c" src="https://static.igem.org/mediawiki/2015/6/62/TU_Eindhoven_ImageQuant.png"> | ||
Line 93: | Line 101: | ||
<div class="right2b"> | <div class="right2b"> | ||
<br /> | <br /> | ||
− | The Thermo Scientific NanoDrop 100 Spectrophotometer measures 2 μl samples with high accuracy and reproducibility. It also has the capability to measure highly concentrated samples without dilution (50X higher concentration than the samples measured by a standard cuvette spectrophotometer). The NanoDrop software has several modes. We always selected the Nucleic Acid option, because we only measured the concentration of DNA samples. Before you can measure the concentration of your samples, you have to place a 2 μl MiliQ sample on the NanoDrop to perform a blank measurement. After this the pedestal needs to be cleaned before you can place your first sample. Cleaning after every sample is very important to prevent contamination | + | <span class="tekst1"> |
+ | The Thermo Scientific NanoDrop 100 Spectrophotometer measures 2 μl samples with high accuracy and reproducibility. It also has the capability to measure highly concentrated samples without dilution (50X higher concentration than the samples measured by a standard cuvette spectrophotometer). The NanoDrop software has several modes. We always selected the Nucleic Acid option, because we only measured the concentration of DNA samples. Before you can measure the concentration of your samples, you have to place a 2 μl MiliQ sample on the NanoDrop to perform a blank measurement. After this the pedestal needs to be cleaned before you can place your first sample. Cleaning after every sample is very important to prevent contamination. | ||
+ | </span> | ||
</div> | </div> | ||
<br /><br /> | <br /><br /> | ||
Line 110: | Line 120: | ||
</h2> | </h2> | ||
<br /> | <br /> | ||
− | The Gallenkamp Environmental Shaker Model has been used for small culturing and protein expression. It can speed up to 400 rpm in combination with a wide 32 mm orbit. We used a shake incubator with standard settings of 37°C and 250 rpm. In our lab there is also a shake incubator for which you can determine the settings on your own. We used this one for protein expression. <br /> | + | <span class="tekst1"> |
+ | The Gallenkamp Environmental Shaker Model has been used for small culturing and protein expression. It can speed up to 400 rpm in combination with a wide 32 mm orbit. We used a shake incubator with standard settings of 37°C and 250 rpm. In our lab there is also a shake incubator for which you can determine the settings on your own. We used this one for protein expression. | ||
+ | </span> | ||
+ | <br /> | ||
<div id="imageText"> | <div id="imageText"> | ||
<img class="left3" src="https://static.igem.org/mediawiki/2015/0/0b/TU_Eindhoven_Shake_Incubator2.png"> | <img class="left3" src="https://static.igem.org/mediawiki/2015/0/0b/TU_Eindhoven_Shake_Incubator2.png"> | ||
Line 135: | Line 148: | ||
<div class="right2b"> | <div class="right2b"> | ||
<br /> | <br /> | ||
+ | <span class="tekst1"> | ||
This fluorescence spectrophotometer uses a Xenon flash lamp for superior sensitivity, high signal-to-noise, and fast kinetics. It measures the emission of light from samples in four modes (fluorescence, phosphorescence, chemi/bioluminescence, and time resolved phosphorescence). Using Xenon lamp technology, it captures a data point every 12.5 ms and scans at 24,000 nm/min without peak shifts. The Cary Eclipse is the only spectrophotometer with room light immunity. A cuvette is needed to be able to measure. | This fluorescence spectrophotometer uses a Xenon flash lamp for superior sensitivity, high signal-to-noise, and fast kinetics. It measures the emission of light from samples in four modes (fluorescence, phosphorescence, chemi/bioluminescence, and time resolved phosphorescence). Using Xenon lamp technology, it captures a data point every 12.5 ms and scans at 24,000 nm/min without peak shifts. The Cary Eclipse is the only spectrophotometer with room light immunity. A cuvette is needed to be able to measure. | ||
+ | </span> | ||
</div> | </div> | ||
<img class="right2c" src="https://static.igem.org/mediawiki/2015/3/3d/TU_Eindhoven_Cary_Eclipse.png"> | <img class="right2c" src="https://static.igem.org/mediawiki/2015/3/3d/TU_Eindhoven_Cary_Eclipse.png"> | ||
Line 156: | Line 171: | ||
<span class="tekst1"> | <span class="tekst1"> | ||
<br /> | <br /> | ||
+ | <span class="tekst1"> | ||
The Infinite F500 is Tecan’s most sensitive filter-based multimode microplate reader. It is capable of reading 6 to 384-well plates, including standard, half-area and low volume 384-well plates. This plate reader is ideal for a broad range of applications, in particular ratiometric assays. It has been used for fluorescence- and luminescence-based assays. Its high speed allows complete reading of a 1,536-well plate in under 30 seconds. The wavelength range for fluorescence varies for excitation from 230 to 900 nm and for emission from 280 to 900 nm. This plate reader gives the intensity value at a specific excitation and emission. This excitation and emission value can be chosen with a specific filter. </span> | The Infinite F500 is Tecan’s most sensitive filter-based multimode microplate reader. It is capable of reading 6 to 384-well plates, including standard, half-area and low volume 384-well plates. This plate reader is ideal for a broad range of applications, in particular ratiometric assays. It has been used for fluorescence- and luminescence-based assays. Its high speed allows complete reading of a 1,536-well plate in under 30 seconds. The wavelength range for fluorescence varies for excitation from 230 to 900 nm and for emission from 280 to 900 nm. This plate reader gives the intensity value at a specific excitation and emission. This excitation and emission value can be chosen with a specific filter. </span> | ||
+ | </span> | ||
</div> | </div> | ||
<img class="right2c" src="https://static.igem.org/mediawiki/2015/6/62/TU_Eindhoven_ImageQuant.png"> | <img class="right2c" src="https://static.igem.org/mediawiki/2015/6/62/TU_Eindhoven_ImageQuant.png"> | ||
Line 176: | Line 193: | ||
<br /> | <br /> | ||
<span class = "tekst1"> | <span class = "tekst1"> | ||
− | The Safire 2 is also a plate reader from Tecan that offers a range of high-speed detection techniques. It can be used to measure fluorescence, luminescence, and absorbance. It eliminates the need for cumbersome filter changes and allows for pinpoint precision, accuracy, and sensitivity. This plate reader gives the intensity value for a broad range of wavelengths. This gives you a spectrum of intensity values as a result. </span> | + | The Safire 2 is also a plate reader from Tecan that offers a range of high-speed detection techniques. It can be used to measure fluorescence, luminescence, and absorbance. It eliminates the need for cumbersome filter changes and allows for pinpoint precision, accuracy, and sensitivity. This plate reader gives the intensity value for a broad range of wavelengths. This gives you a spectrum of intensity values as a result. |
+ | </span> | ||
</div> | </div> | ||
<br /><br /> | <br /><br /> | ||
Line 191: | Line 209: | ||
− | + | ||
</html> | </html> |
Revision as of 21:27, 18 September 2015
Lab Equipment
In the lab we used many devices to perform our experiments. Followed is a short description of each equipment.
MiniSpin Centrifuge
The MiniSpin Centrifuge (figure 1A) is a powerful centrifuge that can accelerate up to twelve 1.5/2.0 ml Eppendorf Tubes to a maximum speed of 13,400 rpm (rcf: 12,100 x g). Balance is very important for this equipment. We used this centrifuge for several experiments, such as PCR Purification, Miniprepping, Gel Extraction and preparing samples for FACS.
Tabletop Centrifuge
The Tabletop Centrifuge (figure 1B) can be used to centrifuge culture tubes. For this centrifuge, balance is also very important, just as with the MiniSpin Centrifuge. We used this centrifuge for several experiments, such as miniprepping.
MJ Mini Thermal Cycler
The compact, 48-well MJ Mini thermal cycler (figure 2) is a powerful thermal cycler that has been used to perform all kinds of PCR reaction, such as digestion and ligation. 0.2 ml PCR tubes can be used. Its thermal range is 0-99°C. This thermal cycler also offers a thermal gradient technology so that you can optimize reactions for maximum efficiency and accurate quantitation with a gradient range of 35-99°C.
ImageQuant 350
This equipment allows high-resolution scans of for example monochromatic fluorescence gels and Western Blots. We used it to make scans of all of our agarose gels and SDS PAGE gels.
NanoDrop 1000 Spectrophotometer
The Thermo Scientific NanoDrop 100 Spectrophotometer measures 2 μl samples with high accuracy and reproducibility. It also has the capability to measure highly concentrated samples without dilution (50X higher concentration than the samples measured by a standard cuvette spectrophotometer). The NanoDrop software has several modes. We always selected the Nucleic Acid option, because we only measured the concentration of DNA samples. Before you can measure the concentration of your samples, you have to place a 2 μl MiliQ sample on the NanoDrop to perform a blank measurement. After this the pedestal needs to be cleaned before you can place your first sample. Cleaning after every sample is very important to prevent contamination.
Shake Incubator
The Gallenkamp Environmental Shaker Model has been used for small culturing and protein expression. It can speed up to 400 rpm in combination with a wide 32 mm orbit. We used a shake incubator with standard settings of 37°C and 250 rpm. In our lab there is also a shake incubator for which you can determine the settings on your own. We used this one for protein expression.
Cary Eclipse Fluorescence Spectrophotometer
This fluorescence spectrophotometer uses a Xenon flash lamp for superior sensitivity, high signal-to-noise, and fast kinetics. It measures the emission of light from samples in four modes (fluorescence, phosphorescence, chemi/bioluminescence, and time resolved phosphorescence). Using Xenon lamp technology, it captures a data point every 12.5 ms and scans at 24,000 nm/min without peak shifts. The Cary Eclipse is the only spectrophotometer with room light immunity. A cuvette is needed to be able to measure.
Tecan Infinite F500 Plate Reader
The Infinite F500 is Tecan’s most sensitive filter-based multimode microplate reader. It is capable of reading 6 to 384-well plates, including standard, half-area and low volume 384-well plates. This plate reader is ideal for a broad range of applications, in particular ratiometric assays. It has been used for fluorescence- and luminescence-based assays. Its high speed allows complete reading of a 1,536-well plate in under 30 seconds. The wavelength range for fluorescence varies for excitation from 230 to 900 nm and for emission from 280 to 900 nm. This plate reader gives the intensity value at a specific excitation and emission. This excitation and emission value can be chosen with a specific filter.
Tecan Safire 2 Plate Reader
The Safire 2 is also a plate reader from Tecan that offers a range of high-speed detection techniques. It can be used to measure fluorescence, luminescence, and absorbance. It eliminates the need for cumbersome filter changes and allows for pinpoint precision, accuracy, and sensitivity. This plate reader gives the intensity value for a broad range of wavelengths. This gives you a spectrum of intensity values as a result.