Difference between revisions of "Team:Nankai/Description"

 
(175 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 +
{{Nankai}}
 
<html>
 
<html>
<head>
+
<link rel="stylesheet" type="text/css" href="https://2015.igem.org/Template:Nankai/miscCSS?action=raw&ctype=text/css" />
<title>Agronomy a Agriculture Category Flat Bootstarp Resposive Website Template | Home :: w3layouts</title>
+
        <link rel="stylesheet" type="text/css" href="https://2015.igem.org/Template:Nankai/bootstrapCSS?action=raw&ctype=text/css" />
<link href="css/bootstrap.css" rel="stylesheet" type="text/css" media="all">
+
        <link rel="stylesheet" type="text/css" href="https://2015.igem.org/Template:Nankai/blue-schemeCSS?action=raw&ctype=text/css" />
<link href="css/style.css" rel="stylesheet" type="text/css" media="all" />
+
        <link rel="stylesheet" type="text/css" href="https://2015.igem.org/Template:Nankai/newCSS?action=raw&ctype=text/css" />
<meta name="viewport" content="width=device-width, initial-scale=1">
+
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
+
<meta name="keywords" content="Agronomy Responsive web template, Bootstrap Web Templates, Flat Web Templates, Andriod Compatible web template,
+
Smartphone Compatible web template, free webdesigns for Nokia, Samsung, LG, SonyErricsson, Motorola web design" />
+
<script type="application/x-javascript"> addEventListener("load", function() { setTimeout(hideURLbar, 0); }, false); function hideURLbar(){ window.scrollTo(0,1); } </script>
+
<link href='http://fonts.googleapis.com/css?family=Roboto+Slab:400,700,300,100' rel='stylesheet' type='text/css'><script src="js/responsiveslides.min.js"></script>
+
<link href='http://fonts.googleapis.com/css?family=Open+Sans:300italic,400italic,600italic,700italic,800italic,400,300,600,700,800' rel='stylesheet' type='text/css'>
+
<script src="js/jquery-1.11.1.min.js"></script>
+
<script src="js/responsiveslides.min.js"></script>
+
    <script>
+
    $(function () {
+
      $("#slider").responsiveSlides({
+
      auto: true,
+
      nav: true,
+
      speed: 500,
+
        namespace: "callbacks",
+
        pager: true,
+
      });
+
    });
+
  </script>
+
<!---- start-smoth-scrolling---->
+
<script type="text/javascript" src="js/move-top.js"></script>
+
<script type="text/javascript" src="js/easing.js"></script>
+
<script type="text/javascript">
+
jQuery(document).ready(function($) {
+
$(".scroll").click(function(event){
+
event.preventDefault();
+
$('html,body').animate({scrollTop:$(this.hash).offset().top},1200);
+
});
+
});
+
</script>
+
<!---End-smoth-scrolling---->
+
<link rel="stylesheet" href="css/swipebox.css">
+
<script src="js/jquery.swipebox.min.js"></script>
+
    <script type="text/javascript">
+
jQuery(function($) {
+
$(".swipebox").swipebox();
+
});
+
</script>
+
  
 +
<style>
 +
#blog {
 +
  background-image: url("https://static.igem.org/mediawiki/2015/8/80/Nankai_projectpic.jpg");
 +
}
 +
</style>
  
</head>
+
 
<body>
+
 
  <div class="header" id="home">
+
<div class="first-widget parallax" id="blog">
  <div class="container">
+
<div class="parallax-overlay">
  <div class="header-top">
+
                    <p>Your place:&nbsp;<a href="https://2015.igem.org/Team:Nankai">Home</a>&nbsp;&gt;&nbsp;<a href="https://2015.igem.org/Team:Nankai/Description">Project</a></p>
<div class="logo">
+
<div class="container pageTitle">
  <a href="index.html"> China NKIGEM</a>
+
<div class="row">
  <p>Nankai Univ..</p>
+
<div class="col-md-6 col-sm-6">
  </div>
+
<h2 class="page-title">Project Description</h2>
  <div class='top-menu'>
+
</div> <!-- /.col-md-6 -->
  <label class="menu"> </label>
+
</div> <!-- /.row -->
  <ul>
+
</div> <!-- /.container -->
  <li><a href='index.html' class="active"><span>Main Page</span></a></li>
+
</div> <!-- /.parallax-overlay -->
    <li><a href='about.html'><span>Team</span></a></li>
+
</div> <!-- /.pageTitle -->
  <li><a href='services.html'><span>Lab</span></a></li>
+
 
  <li><a href='news.html'><span>News</span></a></li>
+
<div class="container">
  <li><a href='contact.html'><span>Experiment</span></a></li>
+
 
    <div class="clearfix"> </div>
+
<div class="row">
    </ul>
+
 
    <!-- script for menu -->
+
<div class="col-md-8 blog-posts">
 +
<h4>1. What is γ-PGA?</h4>
 +
<p>Poly-γ-glutamic acid (γ-PGA) is an important, naturally occurring polyamide consisting of D/L-glutamate monomers. Unlike typical peptide linkages, the amide linkages in γ-PGA are formed between the α-amino group and the γ-carboxyl group. γ-PGA exhibits many favorable features such as biodegradable, water soluble, edible and non-toxic to humans and the environment. Therefore, it has been widely used in fields of foods, medicines, cosmetics and agriculture and many unique applications, such as a sustained release material and drug carrier, curable biological adhesive, biodegradable fibres, and highly water absorbable hydrogels.</p>
 +
<h4>2. How can we produce it?</h4>
 +
<p>Strains capable for producing γ-PGA are divided into two categories based on their requirement for glutamate acid: glutamate-dependent strains and glutamate-independent strains. Glutamate-independent strains are preferable for industrial production because of their low cost and simplified fermentation process. However, compared with glutamate-dependent strains, their lower γ-PGA productivity limits their industrial application.Therefore, the construction of a glutamate-independent strain with high γ-PGA yield is important for industrial applications.</p>
 +
<h4>3. Who can produce it?</h4>
 +
<p><em>Bacillusamyloliquefaciens</em> LL3, isolated from fermented food, is a glutamate-independent strain, which can produce 3-4 g/L γ-PGA with sucrose as its carbon source and ammonium sulfate as its nitrogen source. The <em>B. amyloliquefaciens</em> LL3 strain was deposited in the China Center for Type Culture Collection (CCTCC) with accession number CCTCC M 208109 and its whole genome has been sequenced in 2011. In this study, we aimed to improve the γ-PGA production based on the <em>B. amyloliquefaciens</em> NK-1 strain (a derivative of LL3 strain with its endogenous plasmid and upp gene deleted).</p>
 +
<h4>4. What did we do?</h4>
 +
<p>In order to improve γ-PGA production, we employed two strategies to fine-tune the synthetic pathways and balance the metabolism in the glutamate-independent <em>B. amyloliquefaciens</em> NK-1 strain. Firstly, we constructed a metabolic toggle switch in the NK-1 strain to inhibit the expression of ODHC (2-oxoglutarate dehydrogenase complex) by adding IPTG in the stationary stage and distribute the metabolic flux more frequently to be used for γ-PGA precursor-glutamate synthesis. As scientists had found that the activity of ODHC was rather low when glutamate was highly produced in a Corynebacterium glutamicum strain. Second, to balance the increase of endogenous glutamate production, we optimized the expression level of <em>pgsBCA genes</em> (responsible for γ-PGA synthesis) by replacing its native promoter to seven different strength of promoters. Through these two strategies, we aimed to obtain a γ-PGA production improved mutant strain.<a href="https://2015.igem.org/Team:Nankai/Experiments">Click for more detail.</a></p>
 +
<h4>5. How do we use γ-PGA?</h4>
 +
<p>We prepared SOD loaded γ-PGA hydrogel for wound healing. SOD was loaded into hydrogels to scavenge the superoxide anion and γ-PGA was modified with taurine to load more SOD.  γ-PGA hydrogel had high water absorption properties delivering the important moist environment. SOD released from the hydrogel maintained high enzyme activity and SOD-γ-PGA hydrogel could scavenge the superoxide anion effectively. In vivo results showed that  SOD-γ-PGA hydrogel could promote collagen deposition, epithelialization, and accelerate the healing of moderately exuding wounds. Therefore, SOD-γ-PGA hydrogel would be a good candidate for wound healing applications. Learn more on <a href="https://2015.igem.org/Team:Nankai/pudding_health_kit">Pudding Health Kit.</a></p>
 
 
<script>
+
</div> <!-- /.col-md-8 -->
$("label.menu").click(function(){
+
$(".top-menu ul").slideToggle("slow" , function(){
+
});
+
});
+
</script>
+
  
<!-- //script for menu -->
+
<div class="col-md-4">
 +
<div class="sidebar">
 +
<div class="sidebar-widget">
 +
<h6><a href="https://2015.igem.org/Team:Nankai/Description">Description</a></h6>
 +
<h6><a href="https://2015.igem.org/Team:Nankai/project_background">Background</a></h6>
 +
<h6><a href="https://2015.igem.org/Team:Nankai/Experiments">Experiments & Protocols</a></h6>
 +
<h6><a href="https://2015.igem.org/Team:Nankai/Results">Results</a></h6>
 +
<h6><a href="https://2015.igem.org/Team:Nankai/Design">Design - Pudding Health Kit</a></h6>
 +
</div> <!-- /.sidebar-widget -->
 +
<div class="sidebar-widget">
 +
<img src="https://static.igem.org/mediawiki/2015/f/f2/Nankai_projectpic3.JPG">
 +
                                                <p>Preparing for LB medium.</p>
 +
<img src="https://static.igem.org/mediawiki/2015/6/6e/Nankai_projectpic1.JPG">
 +
                                                <p>Cultured LL3.</p>
 +
<img src="https://static.igem.org/mediawiki/2015/2/2d/Nankai_projectpic2.jpg">
 +
                                                <p>In the progress of fermentation.</p>
 +
<img src="https://static.igem.org/mediawiki/2015/e/ef/Nankai_projectpic5.JPG">
 +
                                                <p>Our primer.</p>
  
</div>
+
</div> <!-- /.sidebar-widget -->
</div>
+
 
  </div>
+
</div> <!-- /.sidebar -->
  </div>
+
</div> <!-- /.col-md-4 -->
  <div class="header-slider">
+
 
  <div class="slider">
+
</div> <!-- /.row -->
    <div class="callbacks_container">
+
<div class="ref">
      <ul class="rslides" id="slider">
+
<h6>References</h6>
        <li>
+
<p>1. Ashiuchi, M., Misono, H., 2002. Biochemistry and molecular genetics of poly-γ-glutamate synthesis. Appl. Biochem. Biotechnol. 59, 9–14.</br>
          <img src="https://static.igem.org/mediawiki/2015/c/c3/408fa2055c87e41aae87d8ce0947c7fa.jpg" alt="">
+
2. Kunioka, M., 1997. Biosynthesis and chemical reactions of poly(amino acid)s from
          <div class="caption">
+
microorganisms. Appl. Microbiol. Biotechnol. 47, 469–475.</br>
          <h3>Nankai University</h3>
+
3. Shih, I.L., Van, Y.T., 2001. The production of poly(γ-glutamic acid) from microorganism and its various applications. Bioresour. Technol. 79, 207–225.</br>
          </div>
+
4. Li, C., 2002. Poly(L-glutamic acid)--anticancer drug conjugates. Adv. Drug Deliver. Rev. 54, 695–713.</br>
        </li>
+
5. Liang, H.F., Chen, C.T., Chen, S.C., Kulkarni, A.R., Chiu, Y.L., Chen, M.C., Sung, H.W., 2006. Paclitaxel-loaded poly(γ-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Biomaterials. 27, 2051–2059.</br>
        <li>
+
6. Richard, A., Margaritis, A., 2001. Poly (glutamic acid) for biomedical applications. Crit. Rev. Biotechnol. 21, 219–232.</br>
          <img src="https://static.igem.org/mediawiki/2015/c/c3/408fa2055c87e41aae87d8ce0947c7fa.jpg" alt="">
+
7. Park, Y.J., Liang, J., Yang, Z., Yang, V.C., 2001. Controlled release of clot-dissolving tissue-type plasmmogen activator from a poly(L-glutamic acid) semi-interpenetrating polymer network hydrogel. J. Control. Release. 74, 243–247.</br>
          <div class="caption">
+
8. Cao, M.F., Geng, W.T., Liu, L., Song, C.J., Xie, H., Guo, W.B., Jin, Y.H., Wang, S.F., 2011. Glutamic acid independent production of poly-γ-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of <em>pgsBCA genes</em>. Bioresour. Technol. 102, 4251–4257.</br>
          <h3>Nankai Senery</h3>
+
9. Geng, W.T., Cao, M.F., Song, C.J., Xie, H., Liu, L., Yang, C., Feng, J., Zhang, W., Jin, Y.H., Du, Y., Wang, S.F., 2011. Complete genome sequence of Bacillus amyloliquefaciens LL3, which exhibits glutamic acid-independent production of poly-γ-glutamic acid. J. Bacteriol. 193, 3393–3394.</br>
          </div>
+
10. Feng, J., Gao, W.X., Gu, Y.Y., Zhang, W., Cao, M.F., Song, C.J., Zhang, P., Sun, M., Yang, C.,  Wang, S.F., 2014a. Functions of poly-gamma-glutamic acid (γ-PGA) degradation genes in γ-PGA synthesis and cell morphology maintenance. Appl. Microbiol. Biotechnol. 98, 6397–6407.</br>
        </li>
+
11. Uy, D., Delaunay S., Germain, P., Engasser, J.M., Goergen, J.L. 2003. Instability of glutamate production by Corynebacterium glutamicum 2262 in continuous culture using the temperature-triggered process. J. Biotech. 104, 173-184.</p>
        <li>
+
          <img src="https://static.igem.org/mediawiki/2015/c/c3/408fa2055c87e41aae87d8ce0947c7fa.jpg" alt="">
+
          <div class="caption">
+
          <h3>Nankai Main building</h3>
+
          </div>
+
        </li>
+
      </ul>
+
  </div>
+
</div>
+
 
</div>
 
</div>
<div class="content">
+
</div> <!-- /.container -->
<div class="welcome">
+
<div class="container">
+
<div class="wel-grids">
+
<div class="col-md-4 wel-grid">
+
<img src="DSC02180.JPG" alt="" width="300" height="400" class="img-responsive" />
+
</div>
+
<div class="col-md-8 wel-grid1">
+
<h3>welcome</h3>
+
<h6>南开大学是国家教育部直属重点综合性大学,是敬爱的周恩来总理的母校。南开大学由严修、张伯苓秉承教育救国理念创办,肇始于1904年,成立于1919年。1937年校园遭侵华日军炸毁,学校南迁,1938年与北京大学、清华大学合组西南联合大学,被誉为“学府北辰”。1946年回津复校并改为国立。新中国成立后,经历高等教育院系调整,成为文理并重的全国重点大学。改革开放以来,天津对外贸易学院、中国旅游管理干部学院相继并入,经教育部与天津市共建支持,学校发展成为国家“211工程”和“985工程”重点建设的综合性研究型大学。南开大学坚持“允公允能,日新月异”的校训,弘扬“爱国、敬业、创新、乐群”的传统和“文以治国、理以强国、商以富国”的理念,以“知中国,服务中国”为宗旨,以杰出校友周恩来为楷模,作育英才,繁荣学术,强国兴邦,传承文明,努力建设世界一流大学</h6>
+
<a href="#" class="button">read more</a>
+
</div>
+
<div class="clearfix"> </div>
+
</div>
+
</div>
+
</div>
+
<div class="service-section">
+
<div class="container">
+
<h3>our services</h3>
+
<div class="service-grids">
+
<div class="col-md-4 service-grid">
+
<h4>团队简介</h4>
+
<img src="https://static.igem.org/mediawiki/2015/e/eb/E8c752622e255daf3772a2bd29a5aca4.jpg" alt="" height="100" class="img-responsive" />
+
<h5>Team INtroduction</h5>
+
<p>Nankai IGEM was established in 2015 consisting of 21 members. We are a team and a big family</p>
+
<a href="#" class="button1"> more read</a>
+
</div>
+
<div class="col-md-4 service-grid">
+
<h4>实验课题</h4>
+
<img src="https://static.igem.org/mediawiki/2015/e/eb/E8c752622e255daf3772a2bd29a5aca4.jpg" class="img-responsive" alt="" />
+
<h5>Research Topic</h5>
+
<p>We are working for promotion of the cell expression in certain protein by modifying gene&nbsp;start.</p>
+
<a href="#" class="button1"> more read</a>
+
</div>
+
<div class="col-md-4 service-grid">
+
<h4>实验室</h4>
+
<img src="https://static.igem.org/mediawiki/2015/e/eb/E8c752622e255daf3772a2bd29a5aca4.jpg" class="img-responsive" alt="" />
+
<h5>LAd information</h5>
+
<p>Stem-cell Lab of Chen &amp; Microorganisms of Song in Nankai College of Life Science in 2015</p>
+
<p> <a href="#" class="button1"> more read</a> </p>
+
</div>
+
<div class="clearfix"> </div>
+
</div>
+
</div>
+
</div>
+
<div class="what"></div>
+
<div class="news-section">
+
  <p>&nbsp;</p>
+
  <p>&nbsp;</p>
+
  <p>&nbsp;</p>
+
  <p>&nbsp;</p>
+
  <p>&nbsp;</p>
+
  <p>&nbsp;</p>
+
  <p>&nbsp;</p>
+
  <p>&nbsp;</p>
+
  <div class="news-grids">
+
    <div class="clearfix"> </div>
+
</div>
+
</div>
+
<div class="google-map"></div>
+
<div class="contact-section">
+
<div class="container">
+
<h3> LEAVE US A MESSAGE</h3>
+
<div class="contact-grid">
+
<div class="col-md-4 contactgrid">
+
<input type="text" class="text" value=" name" onfocus="this.value = '';" onblur="if (this.value == '') {this.value = ' name';}">
+
</div>
+
<div class="col-md-4 contactgrid">
+
<input type="text" class="text" value="email" onfocus="this.value = '';" onblur="if (this.value == '') {this.value = 'email';}">
+
</div>
+
<div class="col-md-4 contactgrid">
+
<input type="text" class="text" value="phone" onfocus="this.value = '';" onblur="if (this.value == '') {this.value = 'phone';}">
+
</div>
+
<div class="clearfix"> </div>
+
<div class="col-md-12 contactgrid1">
+
<textarea onfocus="if(this.value == 'Your Message') this.value='';" onblur="if(this.value == '') this.value='Your Message';" >Your Message</textarea>
+
</div>
+
<div class="contactgrid2">
+
<input type="button" value="send message">
+
  </div>
+
 
+
</div>
+
  
</div>
+
</div>
+
<div class="footer-section">
+
<div class="container">
+
<div class="footer-top">
+
<div class="social-icons">
+
<a href="#"><i class="icon1"></i></a>
+
<a href="#"><i class="icon2"></i></a>
+
<a href="#"><i class="icon3"></i></a>
+
</div>
+
</div>
+
  
<div class="footer-bottom">
+
<p> Copyright &copy;2015  All rights  Reserved | Template by<a href="http://w3layouts.com" target="target_blank">W3Layouts</a></p>
+
</div>
+
<script type="text/javascript">
+
$(document).ready(function() {
+
/*
+
var defaults = {
+
  containerID: 'toTop', // fading element id
+
containerHoverID: 'toTopHover', // fading element hover id
+
scrollSpeed: 1200,
+
easingType: 'linear'
+
};
+
*/
+
+
$().UItoTop({ easingType: 'easeOutQuart' });
+
+
});
+
</script>
+
<a class="scroll" href="#home" id="toTop" style="display: block;"> <span id="toTopHover" style="opacity: 1;"> </span></a>
+
  
</div>
+
<!-- Scripts -->
</div>
+
<p class="tail">&nbsp;<p>
</body>
+
 
</html>
 
</html>
 +
{{Nankaifoot}}

Latest revision as of 21:41, 18 September 2015

Medigo Blue, free responsive template

Your place: Home > Project

Project Description

1. What is γ-PGA?

Poly-γ-glutamic acid (γ-PGA) is an important, naturally occurring polyamide consisting of D/L-glutamate monomers. Unlike typical peptide linkages, the amide linkages in γ-PGA are formed between the α-amino group and the γ-carboxyl group. γ-PGA exhibits many favorable features such as biodegradable, water soluble, edible and non-toxic to humans and the environment. Therefore, it has been widely used in fields of foods, medicines, cosmetics and agriculture and many unique applications, such as a sustained release material and drug carrier, curable biological adhesive, biodegradable fibres, and highly water absorbable hydrogels.

2. How can we produce it?

Strains capable for producing γ-PGA are divided into two categories based on their requirement for glutamate acid: glutamate-dependent strains and glutamate-independent strains. Glutamate-independent strains are preferable for industrial production because of their low cost and simplified fermentation process. However, compared with glutamate-dependent strains, their lower γ-PGA productivity limits their industrial application.Therefore, the construction of a glutamate-independent strain with high γ-PGA yield is important for industrial applications.

3. Who can produce it?

Bacillusamyloliquefaciens LL3, isolated from fermented food, is a glutamate-independent strain, which can produce 3-4 g/L γ-PGA with sucrose as its carbon source and ammonium sulfate as its nitrogen source. The B. amyloliquefaciens LL3 strain was deposited in the China Center for Type Culture Collection (CCTCC) with accession number CCTCC M 208109 and its whole genome has been sequenced in 2011. In this study, we aimed to improve the γ-PGA production based on the B. amyloliquefaciens NK-1 strain (a derivative of LL3 strain with its endogenous plasmid and upp gene deleted).

4. What did we do?

In order to improve γ-PGA production, we employed two strategies to fine-tune the synthetic pathways and balance the metabolism in the glutamate-independent B. amyloliquefaciens NK-1 strain. Firstly, we constructed a metabolic toggle switch in the NK-1 strain to inhibit the expression of ODHC (2-oxoglutarate dehydrogenase complex) by adding IPTG in the stationary stage and distribute the metabolic flux more frequently to be used for γ-PGA precursor-glutamate synthesis. As scientists had found that the activity of ODHC was rather low when glutamate was highly produced in a Corynebacterium glutamicum strain. Second, to balance the increase of endogenous glutamate production, we optimized the expression level of pgsBCA genes (responsible for γ-PGA synthesis) by replacing its native promoter to seven different strength of promoters. Through these two strategies, we aimed to obtain a γ-PGA production improved mutant strain.Click for more detail.

5. How do we use γ-PGA?

We prepared SOD loaded γ-PGA hydrogel for wound healing. SOD was loaded into hydrogels to scavenge the superoxide anion and γ-PGA was modified with taurine to load more SOD. γ-PGA hydrogel had high water absorption properties delivering the important moist environment. SOD released from the hydrogel maintained high enzyme activity and SOD-γ-PGA hydrogel could scavenge the superoxide anion effectively. In vivo results showed that SOD-γ-PGA hydrogel could promote collagen deposition, epithelialization, and accelerate the healing of moderately exuding wounds. Therefore, SOD-γ-PGA hydrogel would be a good candidate for wound healing applications. Learn more on Pudding Health Kit.

References

1. Ashiuchi, M., Misono, H., 2002. Biochemistry and molecular genetics of poly-γ-glutamate synthesis. Appl. Biochem. Biotechnol. 59, 9–14.
2. Kunioka, M., 1997. Biosynthesis and chemical reactions of poly(amino acid)s from microorganisms. Appl. Microbiol. Biotechnol. 47, 469–475.
3. Shih, I.L., Van, Y.T., 2001. The production of poly(γ-glutamic acid) from microorganism and its various applications. Bioresour. Technol. 79, 207–225.
4. Li, C., 2002. Poly(L-glutamic acid)--anticancer drug conjugates. Adv. Drug Deliver. Rev. 54, 695–713.
5. Liang, H.F., Chen, C.T., Chen, S.C., Kulkarni, A.R., Chiu, Y.L., Chen, M.C., Sung, H.W., 2006. Paclitaxel-loaded poly(γ-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Biomaterials. 27, 2051–2059.
6. Richard, A., Margaritis, A., 2001. Poly (glutamic acid) for biomedical applications. Crit. Rev. Biotechnol. 21, 219–232.
7. Park, Y.J., Liang, J., Yang, Z., Yang, V.C., 2001. Controlled release of clot-dissolving tissue-type plasmmogen activator from a poly(L-glutamic acid) semi-interpenetrating polymer network hydrogel. J. Control. Release. 74, 243–247.
8. Cao, M.F., Geng, W.T., Liu, L., Song, C.J., Xie, H., Guo, W.B., Jin, Y.H., Wang, S.F., 2011. Glutamic acid independent production of poly-γ-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of pgsBCA genes. Bioresour. Technol. 102, 4251–4257.
9. Geng, W.T., Cao, M.F., Song, C.J., Xie, H., Liu, L., Yang, C., Feng, J., Zhang, W., Jin, Y.H., Du, Y., Wang, S.F., 2011. Complete genome sequence of Bacillus amyloliquefaciens LL3, which exhibits glutamic acid-independent production of poly-γ-glutamic acid. J. Bacteriol. 193, 3393–3394.
10. Feng, J., Gao, W.X., Gu, Y.Y., Zhang, W., Cao, M.F., Song, C.J., Zhang, P., Sun, M., Yang, C., Wang, S.F., 2014a. Functions of poly-gamma-glutamic acid (γ-PGA) degradation genes in γ-PGA synthesis and cell morphology maintenance. Appl. Microbiol. Biotechnol. 98, 6397–6407.
11. Uy, D., Delaunay S., Germain, P., Engasser, J.M., Goergen, J.L. 2003. Instability of glutamate production by Corynebacterium glutamicum 2262 in continuous culture using the temperature-triggered process. J. Biotech. 104, 173-184.

 

Medigo Blue, free responsive template