Difference between revisions of "Team:Nankai/Description"

 
(167 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<html xmlns="http://www.w3.org/1999/xhtml">
+
{{Nankai}}
<head>
+
<html>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
+
<link rel="stylesheet" type="text/css" href="https://2015.igem.org/Template:Nankai/miscCSS?action=raw&ctype=text/css" />
<title></title>
+
        <link rel="stylesheet" type="text/css" href="https://2015.igem.org/Template:Nankai/bootstrapCSS?action=raw&ctype=text/css" />
<meta name="keywords" content="" />
+
        <link rel="stylesheet" type="text/css" href="https://2015.igem.org/Template:Nankai/blue-schemeCSS?action=raw&ctype=text/css" />
<meta name="description" content="" />
+
        <link rel="stylesheet" type="text/css" href="https://2015.igem.org/Template:Nankai/newCSS?action=raw&ctype=text/css" />
<link href="http://fonts.googleapis.com/css?family=Source+Sans+Pro:200,300,400,600,700,900|Quicksand:400,700|Questrial" rel="stylesheet" />
+
<link href="https://2015.igem.org/Template:Nankai/css/defultCSS?action=raw&ctype=text/css" rel="stylesheet" type="text/css" media="all" />
+
<link href="https://2015.igem.org/Template:Nankai/css/fontCSS?action=raw&ctype=text/css" rel="stylesheet" type="text/css" media="all" />
+
  
 
<style>
 
<style>
.firstsection {
+
#blog {
margin-top:100px;
+
  background-image: url("https://static.igem.org/mediawiki/2015/8/80/Nankai_projectpic.jpg");
width:100%;
+
 
}
 
}
.normalsection{
 
padding-top:100px;
 
}
 
section {
 
text-align: center;
 
}
 
.text {
 
width:80%;
 
margin-left:auto;
 
margin-right:auto
 
}
 
  #contentSub, #menubar, #footer-box, #siteSub, #catlinks, #search-controls, #p-logo, .printfooter, .firstHeading, .visualClear
 
{
 
    display:none;
 
  }
 
  html, body {
 
    width: auto !important;
 
    /*overflow-x: hidden !important;*/
 
    height: 100% !important;
 
 
  }
 
  /*End claer*/
 
 
</style>
 
</style>
  
</head>
+
 
<body>
+
 
<div id="header-wrapper">
+
<div class="first-widget parallax" id="blog">
<div id="header" class="container">
+
<div class="parallax-overlay">
<div id="logo">
+
                    <p>Your place:&nbsp;<a href="https://2015.igem.org/Team:Nankai">Home</a>&nbsp;&gt;&nbsp;<a href="https://2015.igem.org/Team:Nankai/Description">Project</a></p>
<h1><span class="icon icon-cog"></span><a href="#">Cerulean</a></h1>
+
<div class="container pageTitle">
<div id="menu">
+
<div class="row">
<ul>
+
<div class="col-md-6 col-sm-6">
<li class="current_page_item"><a href="#" accesskey="1" title="">Homepage</a></li>
+
<h2 class="page-title">Project Description</h2>
<li><a href="#" accesskey="2" title="">Our Clients</a></li>
+
</div> <!-- /.col-md-6 -->
<li><a href="#" accesskey="3" title="">About Us</a></li>
+
</div> <!-- /.row -->
<li><a href="#" accesskey="4" title="">Careers</a></li>
+
</div> <!-- /.container -->
<li><a href="#" accesskey="5" title="">Contact Us</a></li>
+
</div> <!-- /.parallax-overlay -->
</ul>
+
</div> <!-- /.pageTitle -->
</div>
+
 
</div>
+
<div class="container">
</div>
+
 
</div>
+
<div class="row">
<div id="page-wrapper">
+
 
<div id="page" class="container">
+
<div class="col-md-8 blog-posts">
<div class="title">
+
<h4>1. What is γ-PGA?</h4>
<h2>Welcome to our website</h2>
+
<p>Poly-γ-glutamic acid (γ-PGA) is an important, naturally occurring polyamide consisting of D/L-glutamate monomers. Unlike typical peptide linkages, the amide linkages in γ-PGA are formed between the α-amino group and the γ-carboxyl group. γ-PGA exhibits many favorable features such as biodegradable, water soluble, edible and non-toxic to humans and the environment. Therefore, it has been widely used in fields of foods, medicines, cosmetics and agriculture and many unique applications, such as a sustained release material and drug carrier, curable biological adhesive, biodegradable fibres, and highly water absorbable hydrogels.</p>
</div>
+
<h4>2. How can we produce it?</h4>
<p>This is <strong>Cerulean</strong>, a free, fully standards-compliant CSS template designed by <a href="http://templated.co" rel="nofollow">TEMPLATED</a>. The photos in this template are from <a href="http://fotogrph.com/"> Fotogrph</a>. This free template is released under the <a href="http://templated.co/license">Creative Commons Attribution</a> license, so you're pretty much free to do whatever you want with it (even use it commercially) provided you give us credit for it. Have fun :) </p>
+
<p>Strains capable for producing γ-PGA are divided into two categories based on their requirement for glutamate acid: glutamate-dependent strains and glutamate-independent strains. Glutamate-independent strains are preferable for industrial production because of their low cost and simplified fermentation process. However, compared with glutamate-dependent strains, their lower γ-PGA productivity limits their industrial application.Therefore, the construction of a glutamate-independent strain with high γ-PGA yield is important for industrial applications.</p>
</div>
+
<h4>3. Who can produce it?</h4>
 +
<p><em>Bacillusamyloliquefaciens</em> LL3, isolated from fermented food, is a glutamate-independent strain, which can produce 3-4 g/L γ-PGA with sucrose as its carbon source and ammonium sulfate as its nitrogen source. The <em>B. amyloliquefaciens</em> LL3 strain was deposited in the China Center for Type Culture Collection (CCTCC) with accession number CCTCC M 208109 and its whole genome has been sequenced in 2011. In this study, we aimed to improve the γ-PGA production based on the <em>B. amyloliquefaciens</em> NK-1 strain (a derivative of LL3 strain with its endogenous plasmid and upp gene deleted).</p>
 +
<h4>4. What did we do?</h4>
 +
<p>In order to improve γ-PGA production, we employed two strategies to fine-tune the synthetic pathways and balance the metabolism in the glutamate-independent <em>B. amyloliquefaciens</em> NK-1 strain. Firstly, we constructed a metabolic toggle switch in the NK-1 strain to inhibit the expression of ODHC (2-oxoglutarate dehydrogenase complex) by adding IPTG in the stationary stage and distribute the metabolic flux more frequently to be used for γ-PGA precursor-glutamate synthesis. As scientists had found that the activity of ODHC was rather low when glutamate was highly produced in a Corynebacterium glutamicum strain. Second, to balance the increase of endogenous glutamate production, we optimized the expression level of <em>pgsBCA genes</em> (responsible for γ-PGA synthesis) by replacing its native promoter to seven different strength of promoters. Through these two strategies, we aimed to obtain a γ-PGA production improved mutant strain.<a href="https://2015.igem.org/Team:Nankai/Experiments">Click for more detail.</a></p>
 +
<h4>5. How do we use γ-PGA?</h4>
 +
<p>We prepared SOD loaded γ-PGA hydrogel for wound healing. SOD was loaded into hydrogels to scavenge the superoxide anion and γ-PGA was modified with taurine to load more SOD.  γ-PGA hydrogel had high water absorption properties delivering the important moist environment. SOD released from the hydrogel maintained high enzyme activity and SOD-γ-PGA hydrogel could scavenge the superoxide anion effectively. In vivo results showed that  SOD-γ-PGA hydrogel could promote collagen deposition, epithelialization, and accelerate the healing of moderately exuding wounds. Therefore, SOD-γ-PGA hydrogel would be a good candidate for wound healing applications. Learn more on <a href="https://2015.igem.org/Team:Nankai/pudding_health_kit">Pudding Health Kit.</a></p>
 +
 +
</div> <!-- /.col-md-8 -->
 +
 
 +
<div class="col-md-4">
 +
<div class="sidebar">
 +
<div class="sidebar-widget">
 +
<h6><a href="https://2015.igem.org/Team:Nankai/Description">Description</a></h6>
 +
<h6><a href="https://2015.igem.org/Team:Nankai/project_background">Background</a></h6>
 +
<h6><a href="https://2015.igem.org/Team:Nankai/Experiments">Experiments & Protocols</a></h6>
 +
<h6><a href="https://2015.igem.org/Team:Nankai/Results">Results</a></h6>
 +
<h6><a href="https://2015.igem.org/Team:Nankai/Design">Design - Pudding Health Kit</a></h6>
 +
</div> <!-- /.sidebar-widget -->
 +
<div class="sidebar-widget">
 +
<img src="https://static.igem.org/mediawiki/2015/f/f2/Nankai_projectpic3.JPG">
 +
                                                <p>Preparing for LB medium.</p>
 +
<img src="https://static.igem.org/mediawiki/2015/6/6e/Nankai_projectpic1.JPG">
 +
                                                <p>Cultured LL3.</p>
 +
<img src="https://static.igem.org/mediawiki/2015/2/2d/Nankai_projectpic2.jpg">
 +
                                                <p>In the progress of fermentation.</p>
 +
<img src="https://static.igem.org/mediawiki/2015/e/ef/Nankai_projectpic5.JPG">
 +
                                                <p>Our primer.</p>
 +
 
 +
</div> <!-- /.sidebar-widget -->
 +
 
 +
</div> <!-- /.sidebar -->
 +
</div> <!-- /.col-md-4 -->
 +
 
 +
</div> <!-- /.row -->
 +
<div class="ref">
 +
<h6>References</h6>
 +
<p>1. Ashiuchi, M., Misono, H., 2002. Biochemistry and molecular genetics of poly-γ-glutamate synthesis. Appl. Biochem. Biotechnol. 59, 9–14.</br>
 +
2. Kunioka, M., 1997. Biosynthesis and chemical reactions of poly(amino acid)s from
 +
microorganisms. Appl. Microbiol. Biotechnol. 47, 469–475.</br>
 +
3. Shih, I.L., Van, Y.T., 2001. The production of poly(γ-glutamic acid) from microorganism and its various applications. Bioresour. Technol. 79, 207–225.</br>
 +
4. Li, C., 2002. Poly(L-glutamic acid)--anticancer drug conjugates. Adv. Drug Deliver. Rev. 54, 695–713.</br>
 +
5. Liang, H.F., Chen, C.T., Chen, S.C., Kulkarni, A.R., Chiu, Y.L., Chen, M.C., Sung, H.W., 2006. Paclitaxel-loaded poly(γ-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Biomaterials. 27, 2051–2059.</br>
 +
6. Richard, A., Margaritis, A., 2001. Poly (glutamic acid) for biomedical applications. Crit. Rev. Biotechnol. 21, 219–232.</br>
 +
7. Park, Y.J., Liang, J., Yang, Z., Yang, V.C., 2001. Controlled release of clot-dissolving tissue-type plasmmogen activator from a poly(L-glutamic acid) semi-interpenetrating polymer network hydrogel. J. Control. Release. 74, 243–247.</br>
 +
8. Cao, M.F., Geng, W.T., Liu, L., Song, C.J., Xie, H., Guo, W.B., Jin, Y.H., Wang, S.F., 2011. Glutamic acid independent production of poly-γ-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of <em>pgsBCA genes</em>. Bioresour. Technol. 102, 4251–4257.</br>
 +
9. Geng, W.T., Cao, M.F., Song, C.J., Xie, H., Liu, L., Yang, C., Feng, J., Zhang, W., Jin, Y.H., Du, Y., Wang, S.F., 2011. Complete genome sequence of Bacillus amyloliquefaciens LL3, which exhibits glutamic acid-independent production of poly-γ-glutamic acid. J. Bacteriol. 193, 3393–3394.</br>
 +
10. Feng, J., Gao, W.X., Gu, Y.Y., Zhang, W., Cao, M.F., Song, C.J., Zhang, P., Sun, M., Yang, C.,  Wang, S.F., 2014a. Functions of poly-gamma-glutamic acid (γ-PGA) degradation genes in γ-PGA synthesis and cell morphology maintenance. Appl. Microbiol. Biotechnol. 98, 6397–6407.</br>
 +
11. Uy, D., Delaunay S., Germain, P., Engasser, J.M., Goergen, J.L. 2003. Instability of glutamate production by Corynebacterium glutamicum 2262 in continuous culture using the temperature-triggered process. J. Biotech. 104, 173-184.</p>
 
</div>
 
</div>
<div class="wrapper">
+
</div> <!-- /.container -->
<div id="three-column" class="container">
+
 
<div><span class="arrow-down"></span></div>
+
<div id="tbox1">
+
<div class="title">
+
<h2>Maecenas luctus</h2>
+
</div>
+
<p>Nullam non wisi a sem semper eleifend. Donec mattis libero eget urna. Duis pretium velit ac suscipit mauris. Proin eu wisi suscipit nulla suscipit interdum.</p>
+
<a href="#" class="button">Learn More</a> </div>
+
<div id="tbox2">
+
<div class="title">
+
<h2>Integer gravida</h2>
+
</div>
+
<p>Proin eu wisi suscipit nulla suscipit interdum. Nullam non wisi a sem semper suscipit eleifend. Donec mattis libero eget urna. Duis  velit ac mauris.</p>
+
<a href="#" class="button">Learn More</a> </div>
+
<div id="tbox3">
+
<div class="title">
+
<h2>Praesent mauris</h2>
+
</div>
+
<p>Donec mattis libero eget urna. Duis pretium velit ac mauris. Proin eu wisi suscipit nulla suscipit interdum. Nullam non wisi a sem suscipit  eleifend.</p>
+
<a href="#" class="button">Learn More</a> </div>
+
</div>
+
<div id="portfolio" class="container">
+
<div class="column1">
+
<div class="box"> <a href="#"><img src="images/scr01.jpg" alt="" class="image image-full" /></a>
+
<h3>Vestibulum venenatis</h3>
+
<p>Fermentum nibh augue praesent a lacus at urna congue rutrum.</p>
+
<a href="#" class="button button-small">Etiam posuere</a> </div>
+
</div>
+
<div class="column2">
+
<div class="box"> <a href="#"><img src="images/scr02.jpg" alt="" class="image image-full" /></a>
+
<h3>Praesent scelerisque</h3>
+
<p>Vivamus fermentum nibh in augue praesent urna congue rutrum.</p>
+
<a href="#" class="button button-small">Etiam posuere</a> </div>
+
</div>
+
<div class="column3">
+
<div class="box"> <a href="#"><img src="images/scr03.jpg" alt="" class="image image-full" /></a>
+
<h3>Donec dictum metus</h3>
+
<p>Vivamus fermentum nibh in augue praesent urna congue rutrum.</p>
+
<a href="#" class="button button-small">Etiam posuere</a> </div>
+
</div>
+
<div class="column4">
+
<div class="box"> <a href="#"><img src="images/scr04.jpg" alt="" class="image image-full" /></a>
+
<h3>Mauris vulputate dolor</h3>
+
<p>Rutrum fermentum nibh in augue praesent urna congue rutrum.</p>
+
<a href="#" class="button button-small">Etiam posuere</a> </div>
+
</div>
+
</div>
+
</div>
+
<div id="wrapper2">
+
<div id="tools">
+
<div class="title">
+
<h2>Vivamus fermentum nibh</h2>
+
</div>
+
<ul class="tools">
+
<li><a href="#" class="icon icon-legal"></a></li>
+
<li><a href="#" class="icon icon-random"></a></li>
+
<li><a href="#" class="icon icon-key"></a></li>
+
<li><a href="#" class="icon icon-wrench"></a></li>
+
<li><a href="#" class="icon icon-cut"></a></li>
+
<li><a href="#" class="icon icon-filter"></a></li>
+
<li><a href="#" class="icon icon-lock"></a></li>
+
</ul>
+
 
 
</div>
+
 
</div>
+
<div id="copyright" class="container">
+
 
<p>&copy; Untitled. All rights reserved. | Photos by <a href="http://fotogrph.com/">Fotogrph</a> | Design by <a href="http://templated.co" rel="nofollow">TEMPLATED</a>.</p>
+
<!-- Scripts -->
<ul class="contact">
+
<p class="tail">&nbsp;<p>
<li><a href="#" class="icon icon-twitter"><span>Twitter</span></a></li>
+
<li><a href="#" class="icon icon-facebook"><span></span></a></li>
+
<li><a href="#" class="icon icon-dribbble"><span>Pinterest</span></a></li>
+
<li><a href="#" class="icon icon-tumblr"><span>Google+</span></a></li>
+
<li><a href="#" class="icon icon-rss"><span>Pinterest</span></a></li>
+
</ul>
+
</div>
+
</body>
+
 
</html>
 
</html>
 +
{{Nankaifoot}}

Latest revision as of 21:41, 18 September 2015

Medigo Blue, free responsive template

Your place: Home > Project

Project Description

1. What is γ-PGA?

Poly-γ-glutamic acid (γ-PGA) is an important, naturally occurring polyamide consisting of D/L-glutamate monomers. Unlike typical peptide linkages, the amide linkages in γ-PGA are formed between the α-amino group and the γ-carboxyl group. γ-PGA exhibits many favorable features such as biodegradable, water soluble, edible and non-toxic to humans and the environment. Therefore, it has been widely used in fields of foods, medicines, cosmetics and agriculture and many unique applications, such as a sustained release material and drug carrier, curable biological adhesive, biodegradable fibres, and highly water absorbable hydrogels.

2. How can we produce it?

Strains capable for producing γ-PGA are divided into two categories based on their requirement for glutamate acid: glutamate-dependent strains and glutamate-independent strains. Glutamate-independent strains are preferable for industrial production because of their low cost and simplified fermentation process. However, compared with glutamate-dependent strains, their lower γ-PGA productivity limits their industrial application.Therefore, the construction of a glutamate-independent strain with high γ-PGA yield is important for industrial applications.

3. Who can produce it?

Bacillusamyloliquefaciens LL3, isolated from fermented food, is a glutamate-independent strain, which can produce 3-4 g/L γ-PGA with sucrose as its carbon source and ammonium sulfate as its nitrogen source. The B. amyloliquefaciens LL3 strain was deposited in the China Center for Type Culture Collection (CCTCC) with accession number CCTCC M 208109 and its whole genome has been sequenced in 2011. In this study, we aimed to improve the γ-PGA production based on the B. amyloliquefaciens NK-1 strain (a derivative of LL3 strain with its endogenous plasmid and upp gene deleted).

4. What did we do?

In order to improve γ-PGA production, we employed two strategies to fine-tune the synthetic pathways and balance the metabolism in the glutamate-independent B. amyloliquefaciens NK-1 strain. Firstly, we constructed a metabolic toggle switch in the NK-1 strain to inhibit the expression of ODHC (2-oxoglutarate dehydrogenase complex) by adding IPTG in the stationary stage and distribute the metabolic flux more frequently to be used for γ-PGA precursor-glutamate synthesis. As scientists had found that the activity of ODHC was rather low when glutamate was highly produced in a Corynebacterium glutamicum strain. Second, to balance the increase of endogenous glutamate production, we optimized the expression level of pgsBCA genes (responsible for γ-PGA synthesis) by replacing its native promoter to seven different strength of promoters. Through these two strategies, we aimed to obtain a γ-PGA production improved mutant strain.Click for more detail.

5. How do we use γ-PGA?

We prepared SOD loaded γ-PGA hydrogel for wound healing. SOD was loaded into hydrogels to scavenge the superoxide anion and γ-PGA was modified with taurine to load more SOD. γ-PGA hydrogel had high water absorption properties delivering the important moist environment. SOD released from the hydrogel maintained high enzyme activity and SOD-γ-PGA hydrogel could scavenge the superoxide anion effectively. In vivo results showed that SOD-γ-PGA hydrogel could promote collagen deposition, epithelialization, and accelerate the healing of moderately exuding wounds. Therefore, SOD-γ-PGA hydrogel would be a good candidate for wound healing applications. Learn more on Pudding Health Kit.

References

1. Ashiuchi, M., Misono, H., 2002. Biochemistry and molecular genetics of poly-γ-glutamate synthesis. Appl. Biochem. Biotechnol. 59, 9–14.
2. Kunioka, M., 1997. Biosynthesis and chemical reactions of poly(amino acid)s from microorganisms. Appl. Microbiol. Biotechnol. 47, 469–475.
3. Shih, I.L., Van, Y.T., 2001. The production of poly(γ-glutamic acid) from microorganism and its various applications. Bioresour. Technol. 79, 207–225.
4. Li, C., 2002. Poly(L-glutamic acid)--anticancer drug conjugates. Adv. Drug Deliver. Rev. 54, 695–713.
5. Liang, H.F., Chen, C.T., Chen, S.C., Kulkarni, A.R., Chiu, Y.L., Chen, M.C., Sung, H.W., 2006. Paclitaxel-loaded poly(γ-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Biomaterials. 27, 2051–2059.
6. Richard, A., Margaritis, A., 2001. Poly (glutamic acid) for biomedical applications. Crit. Rev. Biotechnol. 21, 219–232.
7. Park, Y.J., Liang, J., Yang, Z., Yang, V.C., 2001. Controlled release of clot-dissolving tissue-type plasmmogen activator from a poly(L-glutamic acid) semi-interpenetrating polymer network hydrogel. J. Control. Release. 74, 243–247.
8. Cao, M.F., Geng, W.T., Liu, L., Song, C.J., Xie, H., Guo, W.B., Jin, Y.H., Wang, S.F., 2011. Glutamic acid independent production of poly-γ-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of pgsBCA genes. Bioresour. Technol. 102, 4251–4257.
9. Geng, W.T., Cao, M.F., Song, C.J., Xie, H., Liu, L., Yang, C., Feng, J., Zhang, W., Jin, Y.H., Du, Y., Wang, S.F., 2011. Complete genome sequence of Bacillus amyloliquefaciens LL3, which exhibits glutamic acid-independent production of poly-γ-glutamic acid. J. Bacteriol. 193, 3393–3394.
10. Feng, J., Gao, W.X., Gu, Y.Y., Zhang, W., Cao, M.F., Song, C.J., Zhang, P., Sun, M., Yang, C., Wang, S.F., 2014a. Functions of poly-gamma-glutamic acid (γ-PGA) degradation genes in γ-PGA synthesis and cell morphology maintenance. Appl. Microbiol. Biotechnol. 98, 6397–6407.
11. Uy, D., Delaunay S., Germain, P., Engasser, J.M., Goergen, J.L. 2003. Instability of glutamate production by Corynebacterium glutamicum 2262 in continuous culture using the temperature-triggered process. J. Biotech. 104, 173-184.

 

Medigo Blue, free responsive template