Difference between revisions of "Team:Nankai/Description"

 
(145 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<html lang="en-US">
+
{{Nankai}}
 +
<html>
 +
<link rel="stylesheet" type="text/css" href="https://2015.igem.org/Template:Nankai/miscCSS?action=raw&ctype=text/css" />
 +
        <link rel="stylesheet" type="text/css" href="https://2015.igem.org/Template:Nankai/bootstrapCSS?action=raw&ctype=text/css" />
 +
        <link rel="stylesheet" type="text/css" href="https://2015.igem.org/Template:Nankai/blue-schemeCSS?action=raw&ctype=text/css" />
 +
        <link rel="stylesheet" type="text/css" href="https://2015.igem.org/Template:Nankai/newCSS?action=raw&ctype=text/css" />
  
 
<meta charset="UTF-8">
 
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1">
 
<title>Medigo Blue, Blog, free template</title>
 
    <meta name="keywords" content="">
 
<meta name="description" content="">
 
    <meta name="author" content="templatemo">
 
   
 
 
<!-- Google Fonts -->
 
<link href="http://fonts.useso.com/css?family=PT+Serif:400,700,400italic,700itali" rel="stylesheet">
 
<link href="http://fonts.useso.com/css?family=Raleway:400,900,800,700,500,200,100,600" rel="stylesheet">
 
 
<!-- Stylesheets -->
 
       
 
<link rel="stylesheet" href="https://2015.igem.org/Template:Nankai/bootstrapCSS?action=raw&ctype=text/css">
 
<link rel="stylesheet" href="https://2015.igem.org/Team:Nankai/Project/misc.css?action=raw&ctype=text/css">
 
 
<link rel="stylesheet" href="https://2015.igem.org/Template:Nankai/blue-schemeCSS?action=raw&ctype=text/css">
 
 
 
<!-- JavaScripts -->
 
<script src="https://2015.igem.org/Team:Nankai/Project/jquery-1.10.2.min.js?action=raw&ctype=text/javascript"></script>
 
<script src="https://2015.igem.org/Team:Nankai/Project/jquery-migrate-1.2.1.min.js?action=raw&ctype=text/javascript"></script>
 
 
<link rel="shortcut icon" href="images/favicon.ico" type="image/x-icon" />
 
 
<style>
 
<style>
.sidebar-widget {
 
margin-left:5%;
 
}
 
.sidebar-widget img{
 
width:80%;
 
}
 
.container .row .col-md-8.blog-posts p {
 
text-indent: 40px;
 
}
 
.sidebar-widget{
 
text-decoration: underline;
 
}
 
  /*Clear existing style*/
 
 
 
  #contentSub, #menubar, #footer-box, #siteSub, #catlinks,
 
 
#search-controls, #p-logo, .printfooter, .firstHeading,
 
 
.visualClear {
 
    display:none;
 
  }
 
 
  html, body {
 
    width: auto !important;
 
    /*overflow-x: hidden !important;*/
 
    height: 100% !important;
 
 
  }
 
  /*End claer*/
 
 
#blog {
 
#blog {
    
+
   background-image: url("https://static.igem.org/mediawiki/2015/8/80/Nankai_projectpic.jpg");
  margin-top: 100px;
+
 
}
 
}
.col-md-8, .col-md-8:before, .col-md-8:after { -webkit-box-sizing: border-box; -moz-box-sizing: border-box; box-sizing: border-box; }
 
 
 
.blog-posts, .blog-posts:before, .blog-posts:after { -webkit-box-sizing: border-box; -moz-box-sizing: border-box; box-sizing: border-box; }
 
.col-md-12, .col-md-12:before, .col-md-12:after { -webkit-box-sizing: border-box; -moz-box-sizing: border-box; box-sizing: border-box; }
 
.blog-post, .blog-post:before, .blog-post:after { -webkit-box-sizing: border-box; -moz-box-sizing: border-box; box-sizing: border-box; }
 
.col-md-6, .col-md-6:before, .col-md-6:after { -webkit-box-sizing: border-box; -moz-box-sizing: border-box; box-sizing: border-box; }
 
.col-md-4, .col-md-4:before, .col-md-4:after { -webkit-box-sizing: border-box; -moz-box-sizing: border-box; box-sizing: border-box; }
 
 
</style>
 
</style>
 
  
  
Line 77: Line 16:
 
<div class="first-widget parallax" id="blog">
 
<div class="first-widget parallax" id="blog">
 
<div class="parallax-overlay">
 
<div class="parallax-overlay">
                  <p>Your place:<a href="https://2015.igem.org/Team:Nankai/Description">&nbsp;Project</a></p>
+
                    <p>Your place:&nbsp;<a href="https://2015.igem.org/Team:Nankai">Home</a>&nbsp;&gt;&nbsp;<a href="https://2015.igem.org/Team:Nankai/Description">Project</a></p>
 
<div class="container pageTitle">
 
<div class="container pageTitle">
 
<div class="row">
 
<div class="row">
Line 93: Line 32:
  
 
<div class="col-md-8 blog-posts">
 
<div class="col-md-8 blog-posts">
<p>Poly-γ-glutamic acid (γ-PGA) is an important, naturally occurring polyamide consisting of D/L-glutamate monomers. Unlike typical peptide linkages, the amide linkages in γ-PGA are formed between the α-amino group and the γ-carboxyl group. γ-PGA exhibits many favorable features such as biodegradable, water soluble, edible and non-toxic to humans and the environment. Therefore, it has been widely used in fields of foods, medicines, cosmetics and agriculture and many unique applications, such as a sustained release material and drug carrier, curable biological adhesive, biodegradable fibres, and highly water absorbable hydrogels.</br></p>
+
<h4>1. What is γ-PGA?</h4>
<p>Strains capable for producing γ-PGA are divided into two categories based on their requirement for glutamate acid: glutamate-dependent strains and glutamate-independent strains. Glutamate-independent strains are preferable for industrial production because of their low cost and simplified fermentation process. However, compared with glutamate-dependent strains, their lower γ-PGA productivity limits their industrial application. Therefore, the construction of a glutamate-independent strain with high γ-PGA yield is important for industrial applications.</br></p>
+
<p>Poly-γ-glutamic acid (γ-PGA) is an important, naturally occurring polyamide consisting of D/L-glutamate monomers. Unlike typical peptide linkages, the amide linkages in γ-PGA are formed between the α-amino group and the γ-carboxyl group. γ-PGA exhibits many favorable features such as biodegradable, water soluble, edible and non-toxic to humans and the environment. Therefore, it has been widely used in fields of foods, medicines, cosmetics and agriculture and many unique applications, such as a sustained release material and drug carrier, curable biological adhesive, biodegradable fibres, and highly water absorbable hydrogels.</p>
<p>Bacillusamyloliquefaciens LL3, isolated from fermented food, is a glutamate-independent strain, which can produce 3-4 g/L γ-PGA with sucrose as its carbon source and ammonium sulfate as its nitrogen source. The B. amyloliquefaciens LL3 strain was deposited in the China Center for Type Culture Collection (CCTCC) with accession number CCTCC M 208109 and its whole genome has been sequenced in 2011. In this study, we aimed to improve the γ-PGA production based on the B. amyloliquefaciens NK-1 strain (a derivative of LL3 strain with its endogenous plasmid and upp gene deleted).</br></p>
+
<h4>2. How can we produce it?</h4>
<p>In order to improve γ-PGA production, we employed two strategies to fine-tune the synthetic pathways and balance the metabolism in the glutamate-independent B. amyloliquefaciens NK-1 strain. Firstly, we constructed a metabolic toggle switch in the NK-1 strain to inhibit the expression of ODHC (2-oxoglutarate dehydrogenase complex) by adding IPTG in the stationary stage and distribute the metabolic flux more frequently to be used for γ-PGA precursor-glutamate synthesis. As scientists had found that the activity of ODHC was rather low when glutamate was highly produced in a Corynebacterium glutamicum strain. Second, to balance the increase of endogenous glutamate production, we optimized the expression level of pgsBCA genes (responsible for γ-PGA synthesis) by replacing its native promoter to seven different strength of promoters. Through these two strategies, we aimed to obtain a γ-PGA production improved mutant strain.</p>
+
<p>Strains capable for producing γ-PGA are divided into two categories based on their requirement for glutamate acid: glutamate-dependent strains and glutamate-independent strains. Glutamate-independent strains are preferable for industrial production because of their low cost and simplified fermentation process. However, compared with glutamate-dependent strains, their lower γ-PGA productivity limits their industrial application.Therefore, the construction of a glutamate-independent strain with high γ-PGA yield is important for industrial applications.</p>
<img src="images/includes/blog1.jpg" alt="">
+
<h4>3. Who can produce it?</h4>
<div class="row">
+
<p><em>Bacillusamyloliquefaciens</em> LL3, isolated from fermented food, is a glutamate-independent strain, which can produce 3-4 g/L γ-PGA with sucrose as its carbon source and ammonium sulfate as its nitrogen source. The <em>B. amyloliquefaciens</em> LL3 strain was deposited in the China Center for Type Culture Collection (CCTCC) with accession number CCTCC M 208109 and its whole genome has been sequenced in 2011. In this study, we aimed to improve the γ-PGA production based on the <em>B. amyloliquefaciens</em> NK-1 strain (a derivative of LL3 strain with its endogenous plasmid and upp gene deleted).</p>
<div class="col-md-12">
+
<h4>4. What did we do?</h4>
<div class="post-blog">
+
<p>In order to improve γ-PGA production, we employed two strategies to fine-tune the synthetic pathways and balance the metabolism in the glutamate-independent <em>B. amyloliquefaciens</em> NK-1 strain. Firstly, we constructed a metabolic toggle switch in the NK-1 strain to inhibit the expression of ODHC (2-oxoglutarate dehydrogenase complex) by adding IPTG in the stationary stage and distribute the metabolic flux more frequently to be used for γ-PGA precursor-glutamate synthesis. As scientists had found that the activity of ODHC was rather low when glutamate was highly produced in a Corynebacterium glutamicum strain. Second, to balance the increase of endogenous glutamate production, we optimized the expression level of <em>pgsBCA genes</em> (responsible for γ-PGA synthesis) by replacing its native promoter to seven different strength of promoters. Through these two strategies, we aimed to obtain a γ-PGA production improved mutant strain.<a href="https://2015.igem.org/Team:Nankai/Experiments">Click for more detail.</a></p>
<div class="blog-image">
+
<h4>5. How do we use γ-PGA?</h4>
+
<p>We prepared SOD loaded γ-PGA hydrogel for wound healing. SOD was loaded into hydrogels to scavenge the superoxide anion and γ-PGA was modified with taurine to load more SODγ-PGA hydrogel had high water absorption properties delivering the important moist environment. SOD released from the hydrogel maintained high enzyme activity and SOD-γ-PGA hydrogel could scavenge the superoxide anion effectively. In vivo results showed that  SOD-γ-PGA hydrogel could promote collagen deposition, epithelialization, and accelerate the healing of moderately exuding wounds. Therefore, SOD-γ-PGA hydrogel would be a good candidate for wound healing applications. Learn more on <a href="https://2015.igem.org/Team:Nankai/pudding_health_kit">Pudding Health Kit.</a></p>
 
+
 
+
 
+
 
+
+
+
</div> <!-- /.blog-image -->
+
<div class="blog-content">
+
<span class="meta-date"><a href="#">28 February 2084</a></span>
+
<span class="meta-comments"><a href="#">14 Comments</a></span>
+
<span class="meta-author"><a href="#">Candy Sharp</a></span>
+
<h3><a href="blog-single.html">Getting Creative With the Google Maps API</a></h3>
+
<p class="light-text">Sed consequat lobortis risus, in rutrum arcu tristique eget. Etiam accumsan lectus quis cursus porta.  Etiam a turpis sed sapien malesuada pellentesque quis id tortor.  Phasellus mattis quam enim, non accumsan nibh tincidunt sed.</p>
+
<p>Nunc ullamcorper nisi sit amet eros dictum, eget vulputate quam rhoncus. Nulla diam eros, ultrices id lacinia ut, aliquet sit amet erat. Duis ut nulla molestie, ullamcorper ligula eu, ultricies tortor. Suspendisse quis consequat a turpis sed sapien quis id tortor <a href="blog-single.html">Continue Reading...</a></p>
+
</div> <!-- /.blog-content -->
+
</div> <!-- /.post-blog -->
+
<div class="post-blog">
+
<div class="blog-image">
+
<a href="blog-single.html">
+
<img src="images/includes/blog2.jpg" alt="">
+
</a>
+
</div> <!-- /.blog-image -->
+
<div class="blog-content">
+
<span class="meta-date"><a href="#">24 February 2084</a></span>
+
<span class="meta-comments"><a href="#">32 Comments</a></span>
+
<span class="meta-author"><a href="#">Candy Sharp</a></span>
+
<h3><a href="blog-single.html">Bird Profile Wellington New Zealand</a></h3>
+
<p class="light-text">Sed consequat lobortis risus, in rutrum arcu tristique eget. Etiam accumsan lectus quis cursus portaEtiam a turpis sed sapien malesuada pellentesque quis id tortor.  Phasellus mattis quam enim, non accumsan nibh tincidunt sed.</p>
+
<p>Nunc ullamcorper nisi sit amet eros dictum, eget vulputate quam rhoncus. Nulla diam eros, ultrices id lacinia ut, aliquet sit amet erat. Duis ut nulla molestie, ullamcorper ligula eu, ultricies tortor. Suspendisse quis consequat a turpis sed sapien quis id tortor <a href="blog-single.html">Continue Reading...</a></p>
+
</div> <!-- /.blog-content -->
+
</div> <!-- /.post-blog -->
+
<div class="post-blog">
+
<div class="blog-image">
+
<a href="blog-single.html">
+
<img src="images/includes/blog3.jpg" alt="">
+
</a>
+
</div> <!-- /.blog-image -->
+
<div class="blog-content">
+
<span class="meta-date"><a href="#">20 February 2084</a></span>
+
<span class="meta-comments"><a href="#">64 Comments</a></span>
+
<span class="meta-author"><a href="#">Candy Sharp</a></span>
+
<h3><a href="blog-single.html">Standard Blog Post Formating Medigo</a></h3>
+
<p class="light-text">Sed consequat lobortis risus, in rutrum arcu tristique eget. Etiam accumsan lectus quis cursus porta.  Etiam a turpis sed sapien malesuada pellentesque quis id tortor.  Phasellus mattis quam enim, non accumsan nibh tincidunt sed.</p>
+
<p>Nunc ullamcorper nisi sit amet eros dictum, eget vulputate quam rhoncus. Nulla diam eros, ultrices id lacinia ut, aliquet sit amet erat. Duis ut nulla molestie, ullamcorper ligula eu, ultricies tortor. Suspendisse quis consequat a turpis sed sapien quis id tortor <a href="blog-single.html">Continue Reading...</a></p>
+
</div> <!-- /.blog-content -->
+
</div> <!-- /.post-blog -->
+
<div class="post-blog">
+
<div class="blog-image">
+
<a href="blog-single.html">
+
<img src="images/includes/blog4.jpg" alt="">
+
</a>
+
</div> <!-- /.blog-image -->
+
<div class="blog-content">
+
<span class="meta-date"><a href="#">24 February 2084</a></span>
+
<span class="meta-comments"><a href="#">128 Comments</a></span>
+
<span class="meta-author"><a href="#">Candy Sharp</a></span>
+
<h3><a href="blog-single.html">Hochbunker High Definition Photography</a></h3>
+
<p class="light-text">Sed consequat lobortis risus, in rutrum arcu tristique eget. Etiam accumsan lectus quis cursus porta.  Etiam a turpis sed sapien malesuada pellentesque quis id tortor.  Phasellus mattis quam enim, non accumsan nibh tincidunt sed.</p>
+
<p>Nunc ullamcorper nisi sit amet eros dictum, eget vulputate quam rhoncus. Nulla diam eros, ultrices id lacinia ut, aliquet sit amet erat. Duis ut nulla molestie, ullamcorper ligula eu, ultricies tortor. Suspendisse quis consequat a turpis sed sapien quis id tortor <a href="blog-single.html">Continue Reading...</a></p>
+
</div> <!-- /.blog-content -->
+
</div> <!-- /.post-blog -->
+
</div> <!-- /.col-md-12 -->
+
<div class="col-md-12">
+
<ul class="pages">
+
<li><a href="#" class="active">1</a></li>
+
<li><a href="#">2</a></li>
+
<li><a href="#">3</a></li>
+
<li><a href="#">...</a></li>
+
<li><a href="#">13</a></li>
+
</ul>
+
</div> <!-- /.col-md-12 -->
+
</div> <!-- /.row -->
+
 
</div> <!-- /.col-md-8 -->
 
</div> <!-- /.col-md-8 -->
  
Line 180: Line 48:
 
<div class="sidebar">
 
<div class="sidebar">
 
<div class="sidebar-widget">
 
<div class="sidebar-widget">
<h5 class="widget-title"><a href="https://2015.igem.org/Team:Nankai/Description">Description</a></h5>
+
<h6><a href="https://2015.igem.org/Team:Nankai/Description">Description</a></h6>
+
<h6><a href="https://2015.igem.org/Team:Nankai/project_background">Background</a></h6>
<h5 class="widget-title"><a href="https://2015.igem.org/Team:Nankai/Experiments">Experiments & Protocols</a></h5>
+
<h6><a href="https://2015.igem.org/Team:Nankai/Experiments">Experiments & Protocols</a></h6>
+
<h6><a href="https://2015.igem.org/Team:Nankai/Results">Results</a></h6>
<h5 class="widget-title"><a href="https://2015.igem.org/Team:Nankai/Results">Results</a></h5>
+
<h6><a href="https://2015.igem.org/Team:Nankai/Design">Design - Pudding Health Kit</a></h6>
<h5 class="widget-title"><a href="https://2015.igem.org/Team:Nankai/Design">Design</a></h5>
+
<ul id="flickr-feed" class="thumbs"></ul>
+
 
</div> <!-- /.sidebar-widget -->
 
</div> <!-- /.sidebar-widget -->
 
<div class="sidebar-widget">
 
<div class="sidebar-widget">
 +
<img src="https://static.igem.org/mediawiki/2015/f/f2/Nankai_projectpic3.JPG">
 +
                                                <p>Preparing for LB medium.</p>
 
<img src="https://static.igem.org/mediawiki/2015/6/6e/Nankai_projectpic1.JPG">
 
<img src="https://static.igem.org/mediawiki/2015/6/6e/Nankai_projectpic1.JPG">
 +
                                                <p>Cultured LL3.</p>
 +
<img src="https://static.igem.org/mediawiki/2015/2/2d/Nankai_projectpic2.jpg">
 +
                                                <p>In the progress of fermentation.</p>
 +
<img src="https://static.igem.org/mediawiki/2015/e/ef/Nankai_projectpic5.JPG">
 +
                                                <p>Our primer.</p>
 +
 
</div> <!-- /.sidebar-widget -->
 
</div> <!-- /.sidebar-widget -->
 +
 
</div> <!-- /.sidebar -->
 
</div> <!-- /.sidebar -->
 
</div> <!-- /.col-md-4 -->
 
</div> <!-- /.col-md-4 -->
  
 
</div> <!-- /.row -->
 
</div> <!-- /.row -->
 +
<div class="ref">
 +
<h6>References</h6>
 +
<p>1. Ashiuchi, M., Misono, H., 2002. Biochemistry and molecular genetics of poly-γ-glutamate synthesis. Appl. Biochem. Biotechnol. 59, 9–14.</br>
 +
2. Kunioka, M., 1997. Biosynthesis and chemical reactions of poly(amino acid)s from
 +
microorganisms. Appl. Microbiol. Biotechnol. 47, 469–475.</br>
 +
3. Shih, I.L., Van, Y.T., 2001. The production of poly(γ-glutamic acid) from microorganism and its various applications. Bioresour. Technol. 79, 207–225.</br>
 +
4. Li, C., 2002. Poly(L-glutamic acid)--anticancer drug conjugates. Adv. Drug Deliver. Rev. 54, 695–713.</br>
 +
5. Liang, H.F., Chen, C.T., Chen, S.C., Kulkarni, A.R., Chiu, Y.L., Chen, M.C., Sung, H.W., 2006. Paclitaxel-loaded poly(γ-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Biomaterials. 27, 2051–2059.</br>
 +
6. Richard, A., Margaritis, A., 2001. Poly (glutamic acid) for biomedical applications. Crit. Rev. Biotechnol. 21, 219–232.</br>
 +
7. Park, Y.J., Liang, J., Yang, Z., Yang, V.C., 2001. Controlled release of clot-dissolving tissue-type plasmmogen activator from a poly(L-glutamic acid) semi-interpenetrating polymer network hydrogel. J. Control. Release. 74, 243–247.</br>
 +
8. Cao, M.F., Geng, W.T., Liu, L., Song, C.J., Xie, H., Guo, W.B., Jin, Y.H., Wang, S.F., 2011. Glutamic acid independent production of poly-γ-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of <em>pgsBCA genes</em>. Bioresour. Technol. 102, 4251–4257.</br>
 +
9. Geng, W.T., Cao, M.F., Song, C.J., Xie, H., Liu, L., Yang, C., Feng, J., Zhang, W., Jin, Y.H., Du, Y., Wang, S.F., 2011. Complete genome sequence of Bacillus amyloliquefaciens LL3, which exhibits glutamic acid-independent production of poly-γ-glutamic acid. J. Bacteriol. 193, 3393–3394.</br>
 +
10. Feng, J., Gao, W.X., Gu, Y.Y., Zhang, W., Cao, M.F., Song, C.J., Zhang, P., Sun, M., Yang, C.,  Wang, S.F., 2014a. Functions of poly-gamma-glutamic acid (γ-PGA) degradation genes in γ-PGA synthesis and cell morphology maintenance. Appl. Microbiol. Biotechnol. 98, 6397–6407.</br>
 +
11. Uy, D., Delaunay S., Germain, P., Engasser, J.M., Goergen, J.L. 2003. Instability of glutamate production by Corynebacterium glutamicum 2262 in continuous culture using the temperature-triggered process. J. Biotech. 104, 173-184.</p>
 +
</div>
 
</div> <!-- /.container -->
 
</div> <!-- /.container -->
  
 
 
  
<footer class="site-footer">
+
<div class="container">
+
<div class="row">
+
<div class="col-md-12">
+
<nav class="footer-nav clearfix">
+
<ul class="footer-menu">
+
<li><a href="index.html">Home</a></li>
+
<li><a href="portfolio.html">Portfolio</a></li>
+
<li><a href="blog.html">Blog Posts</a></li>
+
<li><a href="archives.html">Shortcodes</a></li>
+
<li><a href="contact.html">Contact</a></li>
+
</ul> <!-- /.footer-menu -->
+
</nav> <!-- /.footer-nav -->
+
</div> <!-- /.col-md-12 -->
+
</div> <!-- /.row -->
+
<div class="row">
+
<div class="col-md-12">
+
<p class="copyright-text">Copyright &copy; 2084 Company Name. More Templates <a href="http://www.cssmoban.com/" target="_blank" title="模板之家">模板之家</a> - Collect from <a href="http://www.cssmoban.com/" title="网页模板" target="_blank">网页模板</a></p>
+
</div> <!-- /.col-md-12 -->
+
</div> <!-- /.row -->
+
</div> <!-- /.container -->
+
</footer> <!-- /.site-footer -->
+
  
 
<!-- Scripts -->
 
<!-- Scripts -->
<script src="https://2015.igem.org/Team:Nankai/Project/plugins.min.js?action=raw&ctype=text/javascript"></script>
+
<p class="tail">&nbsp;<p>
<script src="https://2015.igem.org/Team:Nankai/Project/medigo-custom.min.js?action=raw&ctype=text/javascript"></script>
+
 
+
 
+
 
+
 
</html>
 
</html>
{{Nankai}}
+
{{Nankaifoot}}

Latest revision as of 21:41, 18 September 2015

Medigo Blue, free responsive template

Your place: Home > Project

Project Description

1. What is γ-PGA?

Poly-γ-glutamic acid (γ-PGA) is an important, naturally occurring polyamide consisting of D/L-glutamate monomers. Unlike typical peptide linkages, the amide linkages in γ-PGA are formed between the α-amino group and the γ-carboxyl group. γ-PGA exhibits many favorable features such as biodegradable, water soluble, edible and non-toxic to humans and the environment. Therefore, it has been widely used in fields of foods, medicines, cosmetics and agriculture and many unique applications, such as a sustained release material and drug carrier, curable biological adhesive, biodegradable fibres, and highly water absorbable hydrogels.

2. How can we produce it?

Strains capable for producing γ-PGA are divided into two categories based on their requirement for glutamate acid: glutamate-dependent strains and glutamate-independent strains. Glutamate-independent strains are preferable for industrial production because of their low cost and simplified fermentation process. However, compared with glutamate-dependent strains, their lower γ-PGA productivity limits their industrial application.Therefore, the construction of a glutamate-independent strain with high γ-PGA yield is important for industrial applications.

3. Who can produce it?

Bacillusamyloliquefaciens LL3, isolated from fermented food, is a glutamate-independent strain, which can produce 3-4 g/L γ-PGA with sucrose as its carbon source and ammonium sulfate as its nitrogen source. The B. amyloliquefaciens LL3 strain was deposited in the China Center for Type Culture Collection (CCTCC) with accession number CCTCC M 208109 and its whole genome has been sequenced in 2011. In this study, we aimed to improve the γ-PGA production based on the B. amyloliquefaciens NK-1 strain (a derivative of LL3 strain with its endogenous plasmid and upp gene deleted).

4. What did we do?

In order to improve γ-PGA production, we employed two strategies to fine-tune the synthetic pathways and balance the metabolism in the glutamate-independent B. amyloliquefaciens NK-1 strain. Firstly, we constructed a metabolic toggle switch in the NK-1 strain to inhibit the expression of ODHC (2-oxoglutarate dehydrogenase complex) by adding IPTG in the stationary stage and distribute the metabolic flux more frequently to be used for γ-PGA precursor-glutamate synthesis. As scientists had found that the activity of ODHC was rather low when glutamate was highly produced in a Corynebacterium glutamicum strain. Second, to balance the increase of endogenous glutamate production, we optimized the expression level of pgsBCA genes (responsible for γ-PGA synthesis) by replacing its native promoter to seven different strength of promoters. Through these two strategies, we aimed to obtain a γ-PGA production improved mutant strain.Click for more detail.

5. How do we use γ-PGA?

We prepared SOD loaded γ-PGA hydrogel for wound healing. SOD was loaded into hydrogels to scavenge the superoxide anion and γ-PGA was modified with taurine to load more SOD. γ-PGA hydrogel had high water absorption properties delivering the important moist environment. SOD released from the hydrogel maintained high enzyme activity and SOD-γ-PGA hydrogel could scavenge the superoxide anion effectively. In vivo results showed that SOD-γ-PGA hydrogel could promote collagen deposition, epithelialization, and accelerate the healing of moderately exuding wounds. Therefore, SOD-γ-PGA hydrogel would be a good candidate for wound healing applications. Learn more on Pudding Health Kit.

References

1. Ashiuchi, M., Misono, H., 2002. Biochemistry and molecular genetics of poly-γ-glutamate synthesis. Appl. Biochem. Biotechnol. 59, 9–14.
2. Kunioka, M., 1997. Biosynthesis and chemical reactions of poly(amino acid)s from microorganisms. Appl. Microbiol. Biotechnol. 47, 469–475.
3. Shih, I.L., Van, Y.T., 2001. The production of poly(γ-glutamic acid) from microorganism and its various applications. Bioresour. Technol. 79, 207–225.
4. Li, C., 2002. Poly(L-glutamic acid)--anticancer drug conjugates. Adv. Drug Deliver. Rev. 54, 695–713.
5. Liang, H.F., Chen, C.T., Chen, S.C., Kulkarni, A.R., Chiu, Y.L., Chen, M.C., Sung, H.W., 2006. Paclitaxel-loaded poly(γ-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Biomaterials. 27, 2051–2059.
6. Richard, A., Margaritis, A., 2001. Poly (glutamic acid) for biomedical applications. Crit. Rev. Biotechnol. 21, 219–232.
7. Park, Y.J., Liang, J., Yang, Z., Yang, V.C., 2001. Controlled release of clot-dissolving tissue-type plasmmogen activator from a poly(L-glutamic acid) semi-interpenetrating polymer network hydrogel. J. Control. Release. 74, 243–247.
8. Cao, M.F., Geng, W.T., Liu, L., Song, C.J., Xie, H., Guo, W.B., Jin, Y.H., Wang, S.F., 2011. Glutamic acid independent production of poly-γ-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of pgsBCA genes. Bioresour. Technol. 102, 4251–4257.
9. Geng, W.T., Cao, M.F., Song, C.J., Xie, H., Liu, L., Yang, C., Feng, J., Zhang, W., Jin, Y.H., Du, Y., Wang, S.F., 2011. Complete genome sequence of Bacillus amyloliquefaciens LL3, which exhibits glutamic acid-independent production of poly-γ-glutamic acid. J. Bacteriol. 193, 3393–3394.
10. Feng, J., Gao, W.X., Gu, Y.Y., Zhang, W., Cao, M.F., Song, C.J., Zhang, P., Sun, M., Yang, C., Wang, S.F., 2014a. Functions of poly-gamma-glutamic acid (γ-PGA) degradation genes in γ-PGA synthesis and cell morphology maintenance. Appl. Microbiol. Biotechnol. 98, 6397–6407.
11. Uy, D., Delaunay S., Germain, P., Engasser, J.M., Goergen, J.L. 2003. Instability of glutamate production by Corynebacterium glutamicum 2262 in continuous culture using the temperature-triggered process. J. Biotech. 104, 173-184.

 

Medigo Blue, free responsive template