Difference between revisions of "Team:Peking/Design"

Line 188: Line 188:
 
               <div style="margin-top:30px; margin-bottom:0">
 
               <div style="margin-top:30px; margin-bottom:0">
 
                 <div class="row">
 
                 <div class="row">
                   <div claa="col-md-6">
+
                   <div class="col-md-6">
 
                     <img src="https://static.igem.org/mediawiki/2015/4/4e/Peking-Project-Overview1.png">
 
                     <img src="https://static.igem.org/mediawiki/2015/4/4e/Peking-Project-Overview1.png">
 
                   </div>
 
                   </div>
Line 199: Line 199:
 
               <div style="margin-top:30px; margin-bottom:0">
 
               <div style="margin-top:30px; margin-bottom:0">
 
                 <div class="row">
 
                 <div class="row">
                   <div claa="col-md-4">
+
                   <div class="col-md-4">
 
                     <img src="https://static.igem.org/mediawiki/2015/9/98/Peking-Project-Overview2.png">
 
                     <img src="https://static.igem.org/mediawiki/2015/9/98/Peking-Project-Overview2.png">
 
                   </div>
 
                   </div>
Line 210: Line 210:
 
             <div style="margin-top:30px; margin-bottom:0">
 
             <div style="margin-top:30px; margin-bottom:0">
 
                 <div class="row">
 
                 <div class="row">
                   <div claa="col-md-6">
+
                   <div class="col-md-6">
 
                     <img src="https://static.igem.org/mediawiki/2015/0/0f/Peking-Project-Overview3.png">
 
                     <img src="https://static.igem.org/mediawiki/2015/0/0f/Peking-Project-Overview3.png">
 
                     </div>
 
                     </div>
Line 221: Line 221:
 
             <div style="margin-top:30px; margin-bottom:0">
 
             <div style="margin-top:30px; margin-bottom:0">
 
                 <div class="row">
 
                 <div class="row">
                   <div claa="col-md-5">
+
                   <div class="col-md-5">
 
                     <img src="https://static.igem.org/mediawiki/2015/0/0f/Peking-Project-Overview3.png">
 
                     <img src="https://static.igem.org/mediawiki/2015/0/0f/Peking-Project-Overview3.png">
 
                     </div>
 
                     </div>

Revision as of 22:10, 18 September 2015

Project

It takes half your life before you discover life is a do-it-yourself project.

Overview

Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains one of the world's most serious public health problems. Although tuberculosis is curable and the treatment success rate is high, it is still the second most common cause of death from infectious disease. Most of the deaths occur for lack of effective identification of those in need of therapy. Case detection is currently the rate-limiting step in TB control.

The currently major TB detection methods all have their own problems. Nucleic Acid Detection (NAD) is a safer, faster, and more sensitive detection method available. However, it has short comes: the high false positive rate from non-specific amplification, and the requirement of extremely expensive clumsy instruments, which make NAD not common for TB diagnosis.

To obviate such problems, Peking iGEM developed a novel detection system that can directly read out specific sequence information inside the PCR amplified product, and convert the information into visible signal. Combined with our work in multi-marker array design and hardware development, this new advanced system can be turned out as a powerful tool in TB diagnosis, with a huge potential for applications and extensions.

PC Reporter

With two fragments of split firefly luciferase separately fused to dCas9 protein, we successfully designed and built a paired dCas9 reporter (PC reporter) that can convert specific sequence information into light signal. We finished the characterization and optimization. Most importantly, we successfully demonstrated the PC reporter with isolated genomic DNA from a pathogenic MTB.

Multi-marker array

To deal with challenges from clinical practices, such as strain mutations, sample variations, and other uncontrollable environmental factors, we designed an array to extract more sequence information for our PC Reporter to test multiple sites on the target genome at one time to improve the reliability. With statistics analysis, we can analyze read-outs in a quantitative way.

Hardware

Noticing that most TB cases occur in developing areas, we designed and built a device (prototype), which was portable, affordable, and can be easily used by medical workers.

Specific isothermal amplification

In order to popularize our detection system to developing areas, we invented two novel isothermal amplification methods that can use one pair of easily designed primers to achieve specific amplification.