Difference between revisions of "Team:NTNU Trondheim/Collaborations"

 
(19 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
<html>
 
<html>
 
<br>
 
<br>
<h2>Collaborations</h2>
+
 
<h3>I. Brixells modeling (<i>University of Warwick</i>)</h3>
+
 
 +
 
 +
<div class="page-header">
 +
<h1>Collaborations </h1>
 +
</div><div class="col-md-3 pull-right">
 +
<div class="panel panel-default">
 +
  <!-- Default panel contents -->
 +
  <div class="panel-heading">Collaborations</div>
 +
 
 +
  <!-- List group -->
 +
  <ul class="list-group">
 +
    <li class="list-group-item"><a href="https://2015.igem.org/Team:NTNU_Trondheim/Collaborations#warwick">Brixells modeling (<i>University of Warwick</i>)</a></li>
 +
    <li class="list-group-item"><a href="https://2015.igem.org/Team:NTNU_Trondheim/Collaborations#darmstadt">iGEM Matchmaker and LabSurfing (<i>Technische Universität Darmstadt</i>)</a></li>
 +
  </ul>
 +
</div>
 +
</div>
 +
<h3 id="warwick">I. Brixells modeling (<i>University of Warwick</i>)</h3>
  
 
<p><a href="https://2015.igem.org/Team:Warwick">Team Warwick</a> has shown interest in our offer to help in modeling and quantitative analysis that we have posted on the <a href="http://almaaslab.nt.ntnu.no/igem_matchmaker/">iGEM Matchmaker</a>. <a href="https://2015.igem.org/Team:Warwick">Team Warwick</a> is aiming to provide precision control over spatial arrangement of cells by designing a tool that enables drawing and building with them.</p>
 
<p><a href="https://2015.igem.org/Team:Warwick">Team Warwick</a> has shown interest in our offer to help in modeling and quantitative analysis that we have posted on the <a href="http://almaaslab.nt.ntnu.no/igem_matchmaker/">iGEM Matchmaker</a>. <a href="https://2015.igem.org/Team:Warwick">Team Warwick</a> is aiming to provide precision control over spatial arrangement of cells by designing a tool that enables drawing and building with them.</p>
Line 21: Line 37:
  
 
<p>We, <a href="https://2015.igem.org/Team:NTNU_Trondheim">Team NTNU Trondheim</a> have offered ideas, modeling frameworks, software simulation, and data analysis to answer these questions, based on <i>information theory</i> and <i>thermodynamics</i>. For Problem 1, we have suggested an approach in terms of binding affinity and specificity where the information entropy is used as a measure of specificity. For Problem 2, we have suggested a thermodynamics approach using the Poisson-Boltzmann theory where the zinc fingers and E. Coli are approximated by a set of beads (one large bead for the E. Coli, small beads for each zinc finger, and a rod of beads for the DNA arm. <a href="https://2015.igem.org/Team:Warwick">Team Warwick</a> has been enthusiastic about this approach since it is a stochastic method that they have not considered, and they have provided that us with data related to the geometry of E. Coli-arm formation.</p>
 
<p>We, <a href="https://2015.igem.org/Team:NTNU_Trondheim">Team NTNU Trondheim</a> have offered ideas, modeling frameworks, software simulation, and data analysis to answer these questions, based on <i>information theory</i> and <i>thermodynamics</i>. For Problem 1, we have suggested an approach in terms of binding affinity and specificity where the information entropy is used as a measure of specificity. For Problem 2, we have suggested a thermodynamics approach using the Poisson-Boltzmann theory where the zinc fingers and E. Coli are approximated by a set of beads (one large bead for the E. Coli, small beads for each zinc finger, and a rod of beads for the DNA arm. <a href="https://2015.igem.org/Team:Warwick">Team Warwick</a> has been enthusiastic about this approach since it is a stochastic method that they have not considered, and they have provided that us with data related to the geometry of E. Coli-arm formation.</p>
 +
 +
<div class="alert alert-warning" role="alert">
 +
This page contains mathematical equations using MathML. Most browsers support it (Safari, Firefox, etc.) but Chrome and IE do not. If you are using Chrome or IE, please consider viewing this page in an alternative browser.
 +
</div>
  
 
<h4>I.1) Probability of bond formation</h4>
 
<h4>I.1) Probability of bond formation</h4>
 +
 +
<p>The probability of bond formation <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mi>P</mi></math> is equal for all different types of fingers <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mi>i</mi></math> can be expressed as the product of the probability of formation for each zinc finger <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><msub><mi>P</mi><mi>i</mi></msub> </math>:</p>
 +
 
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
 
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
 
       <mrow>
 
       <mrow>
Line 40: Line 63:
 
       </math>
 
       </math>
 
   
 
   
 +
<p>This is a clear measure of how strong the structure is.</p>
 +
<p>The probability of formation for a zinc finger <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mi>i</mi></math> is expressed as a function of the specificity.</p>
 +
 +
 
  <math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
 
  <math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
 
       <mrow>
 
       <mrow>
Line 69: Line 96:
 
       </math>
 
       </math>
 
   
 
   
 +
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mi>W</mi></math> is the product log function and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><msub><mi>S</mi><mi>i</mi></msub></math> is the specificity which is the information theoretical Shannon "mutual information", and is expressed as follows:</p>
 +
 
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
 
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
 
       <mrow>
 
       <mrow>
Line 141: Line 170:
 
         </mrow>
 
         </mrow>
 
       </math>
 
       </math>
 
+
 +
<p>That calculates the specificity of one zinc finger, i.e. how well a zinc finger binds specifically to an arm when it is competing with other zinc fingers. <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">            <msub>
 +
            <mi>K</mi>
 +
            <mrow>
 +
              <mi>i</mi>
 +
              <mi>,</mi>
 +
              <mi>j</mi>
 +
            </mrow>
 +
            </msub></math> is the binding affinity of zinc finger <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mi>i</mi></math> specifically to arm <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mi>j</mi></math>.</p>
 +
 +
<p>The binding affinity is related to the binding probability <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">        <msubsup>
 +
          <mi>P</mi>
 +
          <mrow>
 +
          <mi>i</mi>
 +
          <mi>,</mi>
 +
          <mi>j</mi>
 +
          </mrow>
 +
          <mi mathvariant="italic">bound</mi>
 +
        </msubsup></math> according to the following equation:</p>
 
   
 
   
 
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
 
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
Line 190: Line 237:
 
         </mrow>
 
         </mrow>
 
       </math>
 
       </math>
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
+
 
      <mrow>
+
        <mrow>
+
     
          <msub>
+
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">         <msub>
          <mi>A</mi>
+
          <mi>i</mi>
+
          </msub>
+
          <mo stretchy="false">+</mo>
+
          <msub>
+
          <mi>F</mi>
+
          <mi>j</mi>
+
          </msub>
+
        </mrow>
+
        <mo stretchy="false">⇔</mo>
+
        <msub>
+
 
           <mi>A</mi>
 
           <mi>A</mi>
 
           <mi>i</mi>
 
           <mi>i</mi>
         </msub>
+
         </msub></math> is the the arm <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mi>i</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">        <msub>
        <msub>
+
 
           <mi>F</mi>
 
           <mi>F</mi>
 
           <mi>j</mi>
 
           <mi>j</mi>
         </msub>
+
         </msub></math>  is the the finger <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mi>j</mi></math>, which are governed by the following ligand-binding reaction:</p>
        </mrow>
+
      </math>
+
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
 
+
      <mrow>
 +
        <mrow>
 +
          <msub>
 +
          <mi>A</mi>
 +
          <mi>i</mi>
 +
          </msub>
 +
          <mo stretchy="false">+</mo>
 +
          <msub>
 +
          <mi>F</mi>
 +
          <mi>j</mi>
 +
          </msub>
 +
        </mrow>
 +
        <mo stretchy="false">⇔</mo>
 +
        <msub>
 +
          <mi>A</mi>
 +
          <mi>i</mi>
 +
        </msub>
 +
        <msub>
 +
          <mi>F</mi>
 +
          <mi>j</mi>
 +
        </msub>
 +
        </mrow>
 +
      </math>
 +
 
 +
<p> </p>
 +
 
 +
<h4>I.2) Effect of arm length</h4>
 +
 
 +
<p>In order to account for the arm length. It is important to express the binding affinity to the geometry of the system consisting of one arm and one zinc finger. We dropp the indices <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mi>i</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mi>j</mi></math> in the following for simplicity. </p>
 +
 
 
  <math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
 
  <math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
 
        <mrow>
 
        <mrow>
Line 230: Line 294:
 
            <mfrac>
 
            <mfrac>
 
            <mrow>
 
            <mrow>
              <mi mathvariant="normal">Δ</mi>
+
              <mi mathvariant="normal">-Δ</mi>
 
              <msub>
 
              <msub>
 
              <mi>G</mi>
 
              <mi>G</mi>
              <mrow>
 
                <mi>i</mi>
 
                <mi>,</mi>
 
                <mi>j</mi>
 
              </mrow>
 
 
              </msub>
 
              </msub>
 
            </mrow>
 
            </mrow>
Line 246: Line 305:
 
        </math>
 
        </math>
 
 
 +
<p>We approximate the bacteria, the zinc fingers, and the DNA arm by a set of beads. The bacteria becomes one large sphere, the zinc finger one small sphere, and the DNA arm becomes a rod consisting of a cascade of beads.</p>
 +
<p>Using these assumptions, the free energy can be calculated from geometrical and electrochemical considerations. In other words, knowing the positions, radii, and charge magnitudes on the beads, the binding free energy of the system is directly calculated as follows.</p>
 +
 
 +
  <math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
 +
        <mrow>
 +
          <mi mathvariant="normal">Δ</mi>
 +
          <mrow>
 +
            <mi>G</mi>
 +
            <mo stretchy="false">=</mo>
 +
            <mrow>
 +
            <msup>
 +
              <mi>G</mi>
 +
              <mi mathvariant="italic">bound</mi>
 +
            </msup>
 +
            <mo stretchy="false">−</mo>
 +
            <msup>
 +
              <mi>G</mi>
 +
              <mi mathvariant="italic">unbound</mi>
 +
            </msup>
 +
            </mrow>
 +
          </mrow>
 +
          </mrow>
 +
        </math>
 +
 +
 +
 +
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">             <msup>
 +
              <mi>G</mi>
 +
              <mi mathvariant="italic">bound</mi>
 +
            </msup></math> is the bound free energy expressed as:</p>
 +
 
 +
 +
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
 +
      <mrow>
 +
        <msup>
 +
          <mi>G</mi>
 +
          <mi mathvariant="italic">bound</mi>
 +
        </msup>
 +
        <mo stretchy="false">=</mo>
 +
        <mrow>
 +
          <munderover>
 +
          <mo stretchy="false">∑</mo>
 +
          <mtable>
 +
            <mtr>
 +
            <mtd>
 +
              <mrow>
 +
              <mi>m</mi>
 +
              <mi>,</mi>
 +
              <mrow>
 +
                <mi>n</mi>
 +
                <mo stretchy="false">=</mo>
 +
                <mn>1</mn>
 +
              </mrow>
 +
              </mrow>
 +
            </mtd>
 +
            </mtr>
 +
            <mtr>
 +
            <mtd>
 +
              <mrow>
 +
              <mi>n</mi>
 +
              <mo stretchy="false">≠</mo>
 +
              <mi>m</mi>
 +
              </mrow>
 +
            </mtd>
 +
            </mtr>
 +
          </mtable>
 +
          <mrow>
 +
            <mi>M</mi>
 +
            <mo stretchy="false">+</mo>
 +
            <mi>N</mi>
 +
          </mrow>
 +
          </munderover>
 +
          <mrow>
 +
          <mo fence="true" stretchy="false">(</mo>
 +
          <mrow>
 +
            <mrow>
 +
            <msub>
 +
              <mi>S</mi>
 +
              <mrow>
 +
              <mi>m</mi>
 +
              <mi>,</mi>
 +
              <mi>n</mi>
 +
              </mrow>
 +
            </msub>
 +
            <mo stretchy="false">+</mo>
 +
            <msub>
 +
              <mi>V</mi>
 +
              <mrow>
 +
              <mi>m</mi>
 +
              <mi>,</mi>
 +
              <mi>n</mi>
 +
              </mrow>
 +
            </msub>
 +
            <mo stretchy="false">+</mo>
 +
            <msub>
 +
              <mi>E</mi>
 +
              <mrow>
 +
              <mi>m</mi>
 +
              <mi>,</mi>
 +
              <mi>n</mi>
 +
              </mrow>
 +
            </msub>
 +
            </mrow>
 +
          </mrow>
 +
          <mo fence="true" stretchy="false">)</mo>
 +
          </mrow>
 +
        </mrow>
 +
        </mrow>
 +
      </math>
 +
 
 +
 +
 +
<p>and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">             <msup>
 +
              <mi>G</mi>
 +
              <mi mathvariant="italic">unbound</mi>
 +
            </msup></math> is the unbound free energy expressed as:</p>
 +
 
 +
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
 +
      <mrow>
 +
        <msup>
 +
          <mi>G</mi>
 +
          <mi mathvariant="italic">unbound</mi>
 +
        </msup>
 +
        <mo stretchy="false">=</mo>
 +
        <mrow>
 +
          <mrow>
 +
          <munderover>
 +
            <mo stretchy="false">∑</mo>
 +
            <mtable>
 +
            <mtr>
 +
              <mtd>
 +
              <mrow>
 +
                <mi>m</mi>
 +
                <mi>,</mi>
 +
                <mrow>
 +
                <mi>n</mi>
 +
                <mo stretchy="false">=</mo>
 +
                <mn>1</mn>
 +
                </mrow>
 +
              </mrow>
 +
              </mtd>
 +
            </mtr>
 +
            <mtr>
 +
              <mtd>
 +
              <mrow>
 +
                <mi>n</mi>
 +
                <mo stretchy="false">≠</mo>
 +
                <mi>m</mi>
 +
              </mrow>
 +
              </mtd>
 +
            </mtr>
 +
            </mtable>
 +
            <mi>N</mi>
 +
          </munderover>
 +
          <mrow>
 +
            <mo fence="true" stretchy="false">(</mo>
 +
            <mrow>
 +
            <mrow>
 +
              <msub>
 +
              <mi>S</mi>
 +
              <mrow>
 +
                <mi>m</mi>
 +
                <mi>,</mi>
 +
                <mi>n</mi>
 +
              </mrow>
 +
              </msub>
 +
              <mo stretchy="false">+</mo>
 +
              <msub>
 +
              <mi>V</mi>
 +
              <mrow>
 +
                <mi>m</mi>
 +
                <mi>,</mi>
 +
                <mi>n</mi>
 +
              </mrow>
 +
              </msub>
 +
              <mo stretchy="false">+</mo>
 +
              <msub>
 +
              <mi>E</mi>
 +
              <mrow>
 +
                <mi>m</mi>
 +
                <mi>,</mi>
 +
                <mi>n</mi>
 +
              </mrow>
 +
              </msub>
 +
            </mrow>
 +
            </mrow>
 +
            <mo fence="true" stretchy="false">)</mo>
 +
          </mrow>
 +
          </mrow>
 +
          <mo stretchy="false">+</mo>
 +
          <mrow>
 +
          <munderover>
 +
            <mo stretchy="false">∑</mo>
 +
            <mtable>
 +
            <mtr>
 +
              <mtd>
 +
              <mrow>
 +
                <mi>m</mi>
 +
                <mi>,</mi>
 +
                <mrow>
 +
                <mi>n</mi>
 +
                <mo stretchy="false">=</mo>
 +
                <mrow>
 +
                  <mi>N</mi>
 +
                  <mo stretchy="false">+</mo>
 +
                  <mn>1</mn>
 +
                </mrow>
 +
                </mrow>
 +
              </mrow>
 +
              </mtd>
 +
            </mtr>
 +
            <mtr>
 +
              <mtd>
 +
              <mrow>
 +
                <mi>n</mi>
 +
                <mo stretchy="false">≠</mo>
 +
                <mi>m</mi>
 +
              </mrow>
 +
              </mtd>
 +
            </mtr>
 +
            </mtable>
 +
            <mrow>
 +
            <mi>M</mi>
 +
            <mo stretchy="false">+</mo>
 +
            <mi>N</mi>
 +
            </mrow>
 +
          </munderover>
 +
          <mrow>
 +
            <mo fence="true" stretchy="false">(</mo>
 +
            <mrow>
 +
            <mrow>
 +
              <msub>
 +
              <mi>S</mi>
 +
              <mrow>
 +
                <mi>m</mi>
 +
                <mi>,</mi>
 +
                <mi>n</mi>
 +
              </mrow>
 +
              </msub>
 +
              <mo stretchy="false">+</mo>
 +
              <msub>
 +
              <mi>V</mi>
 +
              <mrow>
 +
                <mi>m</mi>
 +
                <mi>,</mi>
 +
                <mi>n</mi>
 +
              </mrow>
 +
              </msub>
 +
              <mo stretchy="false">+</mo>
 +
              <msub>
 +
              <mi>E</mi>
 +
              <mrow>
 +
                <mi>m</mi>
 +
                <mi>,</mi>
 +
                <mi>n</mi>
 +
              </mrow>
 +
              </msub>
 +
            </mrow>
 +
            </mrow>
 +
            <mo fence="true" stretchy="false">)</mo>
 +
          </mrow>
 +
          </mrow>
 +
        </mrow>
 +
        </mrow>
 +
      </math>
 +
 
 +
 +
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"> m</math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">n</math> are bead indices, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"> M</math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">N</math> are the number of beads in each subsystem.</p>
 +
 +
 +
            <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"> <mi>R</mi>
 +
            <mrow>
 +
            <mi>m</mi>
 +
            <mi>,</mi>
 +
            <mi>n</mi>
 +
            </mrow></math> is the distance between two beads.              <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">                     <msub>
 +
                      <mi mathvariant="normal">ρ</mi>
 +
                      <mi>m</mi>
 +
                    </msub></math> is the radius of a bead <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"> m</math>, and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">                     <msub>
 +
                      <mi mathvariant="normal">q</mi>
 +
                      <mi>m</mi>
 +
                    </msub></math> is the charge magnitude of a bead <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"> m</math>.
 +
 +
 +
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">          <msub>
 +
          <mi>E</mi>
 +
          <mrow>
 +
          <mi>m</mi>
 +
          <mi>,</mi>
 +
          <mi>n</mi>
 +
          </mrow>
 +
        </msub></math> is the electrostatic energy potential expressed as:</p>
 +
 
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
 
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
 
       <mrow>
 
       <mrow>
Line 285: Line 637:
 
         </mrow>
 
         </mrow>
 
       </math>  
 
       </math>  
 
+
 
 +
<p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">           <msub>
 +
          <mi>V</mi>
 +
          <mrow>
 +
            <mi>m</mi>
 +
            <mi>,</mi>
 +
            <mi>n</mi>
 +
          </mrow>
 +
          </msub></math> is the van Der Waals force potential expressed as:</p>
 +
 
 
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
 
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
 
      <mrow>
 
      <mrow>
Line 483: Line 844:
 
        </mrow>
 
        </mrow>
 
      </math>
 
      </math>
 
+
 
 
+
<p>and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">         <msub>
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
+
          <mi>S</mi>
      <mrow>
+
          <mrow>
        <msub>
+
            <mi>m</mi>
          <mi>g</mi>
+
            <mi>,</mi>
          <mrow>
+
             <mi>n</mi>
          <mi>m</mi>
+
          <mi>,</mi>
+
          <mi>n</mi>
+
          </mrow>
+
        </msub>
+
        <mo stretchy="false">=</mo>
+
        <mfrac>
+
          <msub>
+
          <mi>R</mi>
+
          <mrow>
+
            <mi>m</mi>
+
            <mi>,</mi>
+
            <mi>n</mi>
+
          </mrow>
+
          </msub>
+
          <mrow>
+
          <mn>4</mn>
+
          <msub>
+
            <mi mathvariant="normal">ρ</mi>
+
            <mi>m</mi>
+
          </msub>
+
          <msub>
+
            <mi mathvariant="normal">ρ</mi>
+
            <mi>n</mi>
+
          </msub>
+
          </mrow>
+
        </mfrac>
+
        </mrow>
+
      </math>
+
 
+
 
+
    <math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
+
          <mrow>
+
            <msub>
+
            <mi>f</mi>
+
            <mrow>
+
              <mi>m</mi>
+
              <mi>,</mi>
+
              <mi>n</mi>
+
            </mrow>
+
             </msub>
+
            <mo stretchy="false">=</mo>
+
            <msqrt>
+
            <mrow>
+
              <mrow>
+
              <msubsup>
+
                <mi>R</mi>
+
                <mrow>
+
                <mi>m</mi>
+
                <mi>,</mi>
+
                <mi>n</mi>
+
                </mrow>
+
                <mn>2</mn>
+
              </msubsup>
+
              <mo stretchy="false">+</mo>
+
              <msub>
+
                <mi mathvariant="normal">ρ</mi>
+
                <mi>m</mi>
+
              </msub>
+
              </mrow>
+
              <msub>
+
              <mi mathvariant="normal">ρ</mi>
+
              <mi>n</mi>
+
              </msub>
+
              <msup>
+
              <mi>e</mi>
+
              <mrow>
+
                <mo stretchy="false">−</mo>
+
                <msub>
+
                <mi>g</mi>
+
                <mrow>
+
                  <mi>m</mi>
+
                  <mi>,</mi>
+
                  <mi>n</mi>
+
                </mrow>
+
                </msub>
+
              </mrow>
+
              </msup>
+
            </mrow>
+
            </msqrt>
+
 
           </mrow>
 
           </mrow>
        </math>
+
          </msub></math> is the pair solvent energy expressed as:</p>  
+
+
 
  <math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
 
  <math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
 
       <mrow>
 
       <mrow>
Line 637: Line 916:
 
       </math>  
 
       </math>  
 
   
 
   
 
+
<p>with</p>  
 
+
    <math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
+
      <mrow>
+
        <msup>
+
          <mi>G</mi>
+
          <mi mathvariant="italic">bound</mi>
+
        </msup>
+
        <mo stretchy="false">=</mo>
+
        <mrow>
+
          <munderover>
+
          <mo stretchy="false">∑</mo>
+
          <mtable>
+
            <mtr>
+
            <mtd>
+
              <mrow>
+
              <mi>m</mi>
+
              <mi>,</mi>
+
              <mrow>
+
                <mi>n</mi>
+
                <mo stretchy="false">=</mo>
+
                <mn>1</mn>
+
              </mrow>
+
              </mrow>
+
            </mtd>
+
            </mtr>
+
            <mtr>
+
            <mtd>
+
              <mrow>
+
              <mi>n</mi>
+
              <mo stretchy="false">≠</mo>
+
              <mi>m</mi>
+
              </mrow>
+
            </mtd>
+
            </mtr>
+
          </mtable>
+
          <mrow>
+
            <mi>M</mi>
+
            <mo stretchy="false">+</mo>
+
            <mi>N</mi>
+
          </mrow>
+
          </munderover>
+
 
           <mrow>
 
           <mrow>
          <mo fence="true" stretchy="false">(</mo>
+
            <msub>
          <mrow>
+
            <mi>f</mi>
            <mrow>
+
            <mrow>
            <msub>
+
              <mi>m</mi>
               <mi>S</mi>
+
              <mi>,</mi>
 +
               <mi>n</mi>
 +
            </mrow>
 +
            </msub>
 +
            <mo stretchy="false">=</mo>
 +
            <msqrt>
 +
            <mrow>
 
               <mrow>
 
               <mrow>
               <mi>m</mi>
+
               <msubsup>
              <mi>,</mi>
+
                 <mi>R</mi>
              <mi>n</mi>
+
              </mrow>
+
            </msub>
+
            <mo stretchy="false">+</mo>
+
            <msub>
+
              <mi>V</mi>
+
              <mrow>
+
              <mi>m</mi>
+
              <mi>,</mi>
+
              <mi>n</mi>
+
              </mrow>
+
            </msub>
+
            <mo stretchy="false">+</mo>
+
            <msub>
+
              <mi>E</mi>
+
              <mrow>
+
              <mi>m</mi>
+
              <mi>,</mi>
+
              <mi>n</mi>
+
              </mrow>
+
            </msub>
+
            </mrow>
+
          </mrow>
+
          <mo fence="true" stretchy="false">)</mo>
+
          </mrow>
+
        </mrow>
+
        </mrow>
+
      </math>
+
 
+
 
+
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
+
      <mrow>
+
        <msup>
+
          <mi>G</mi>
+
          <mi mathvariant="italic">unbound</mi>
+
        </msup>
+
        <mo stretchy="false">=</mo>
+
        <mrow>
+
          <mrow>
+
          <munderover>
+
            <mo stretchy="false">∑</mo>
+
            <mtable>
+
            <mtr>
+
              <mtd>
+
              <mrow>
+
                <mi>m</mi>
+
                 <mi>,</mi>
+
 
                 <mrow>
 
                 <mrow>
 +
                <mi>m</mi>
 +
                <mi>,</mi>
 
                 <mi>n</mi>
 
                 <mi>n</mi>
                <mo stretchy="false">=</mo>
 
                <mn>1</mn>
 
 
                 </mrow>
 
                 </mrow>
              </mrow>
+
                <mn>2</mn>
              </mtd>
+
              </msubsup>
            </mtr>
+
              <mo stretchy="false">+</mo>
            <mtr>
+
               <msub>
              <mtd>
+
                 <mi mathvariant="normal">ρ</mi>
               <mrow>
+
                 <mi>n</mi>
+
                <mo stretchy="false"></mo>
+
 
                 <mi>m</mi>
 
                 <mi>m</mi>
               </mrow>
+
               </msub>
               </mtd>
+
               </mrow>
            </mtr>
+
            </mtable>
+
            <mi>N</mi>
+
          </munderover>
+
          <mrow>
+
            <mo fence="true" stretchy="false">(</mo>
+
            <mrow>
+
            <mrow>
+
 
               <msub>
 
               <msub>
               <mi>S</mi>
+
               <mi mathvariant="normal">ρ</mi>
               <mrow>
+
               <mi>n</mi>
                <mi>m</mi>
+
                <mi>,</mi>
+
                <mi>n</mi>
+
              </mrow>
+
 
               </msub>
 
               </msub>
               <mo stretchy="false">+</mo>
+
               <msup>
              <msub>
+
               <mi>e</mi>
               <mi>V</mi>
+
 
               <mrow>
 
               <mrow>
                 <mi>m</mi>
+
                 <mo stretchy="false"></mo>
                <mi>,</mi>
+
                 <msub>
                <mi>n</mi>
+
                 <mi>g</mi>
              </mrow>
+
              </msub>
+
              <mo stretchy="false">+</mo>
+
              <msub>
+
              <mi>E</mi>
+
              <mrow>
+
                 <mi>m</mi>
+
                <mi>,</mi>
+
                <mi>n</mi>
+
              </mrow>
+
              </msub>
+
            </mrow>
+
            </mrow>
+
            <mo fence="true" stretchy="false">)</mo>
+
          </mrow>
+
          </mrow>
+
          <mo stretchy="false">+</mo>
+
          <mrow>
+
          <munderover>
+
            <mo stretchy="false">∑</mo>
+
            <mtable>
+
            <mtr>
+
              <mtd>
+
              <mrow>
+
                <mi>m</mi>
+
                <mi>,</mi>
+
                <mrow>
+
                 <mi>n</mi>
+
                <mo stretchy="false">=</mo>
+
 
                 <mrow>
 
                 <mrow>
                   <mi>N</mi>
+
                   <mi>m</mi>
                   <mo stretchy="false">+</mo>
+
                   <mi>,</mi>
                   <mn>1</mn>
+
                   <mi>n</mi>
 
                 </mrow>
 
                 </mrow>
                 </mrow>
+
                 </msub>
 
               </mrow>
 
               </mrow>
               </mtd>
+
               </msup>
            </mtr>
+
            <mtr>
+
              <mtd>
+
              <mrow>
+
                <mi>n</mi>
+
                <mo stretchy="false">≠</mo>
+
                <mi>m</mi>
+
              </mrow>
+
              </mtd>
+
            </mtr>
+
            </mtable>
+
            <mrow>
+
            <mi>M</mi>
+
            <mo stretchy="false">+</mo>
+
            <mi>N</mi>
+
            </mrow>
+
          </munderover>
+
          <mrow>
+
            <mo fence="true" stretchy="false">(</mo>
+
            <mrow>
+
            <mrow>
+
              <msub>
+
              <mi>S</mi>
+
              <mrow>
+
                <mi>m</mi>
+
                <mi>,</mi>
+
                <mi>n</mi>
+
              </mrow>
+
              </msub>
+
              <mo stretchy="false">+</mo>
+
              <msub>
+
              <mi>V</mi>
+
              <mrow>
+
                <mi>m</mi>
+
                <mi>,</mi>
+
                <mi>n</mi>
+
              </mrow>
+
              </msub>
+
              <mo stretchy="false">+</mo>
+
              <msub>
+
              <mi>E</mi>
+
              <mrow>
+
                <mi>m</mi>
+
                <mi>,</mi>
+
                <mi>n</mi>
+
              </mrow>
+
              </msub>
+
 
             </mrow>
 
             </mrow>
             </mrow>
+
             </msqrt>
            <mo fence="true" stretchy="false">)</mo>
+
 
           </mrow>
 
           </mrow>
          </mrow>
+
        </math>
        </mrow>
+
        </mrow>
+
<p>and</p>
      </math>
+
 +
   
 +
  <math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
 +
        <mrow>
 +
          <msub>
 +
            <mi>g</mi>
 +
            <mrow>
 +
            <mi>m</mi>
 +
            <mi>,</mi>
 +
            <mi>n</mi>
 +
            </mrow>
 +
          </msub>
 +
          <mo stretchy="false">=</mo>
 +
          <mfrac>
 +
            <msub>
 +
            <mi>R</mi>
 +
            <mrow>
 +
              <mi>m</mi>
 +
              <mi>,</mi>
 +
              <mi>n</mi>
 +
            </mrow>
 +
            </msub>
 +
            <mrow>
 +
            <mn>4</mn>
 +
            <msub>
 +
              <mi mathvariant="normal">ρ</mi>
 +
              <mi>m</mi>
 +
            </msub>
 +
            <msub>
 +
              <mi mathvariant="normal">ρ</mi>
 +
              <mi>n</mi>
 +
            </msub>
 +
            </mrow>
 +
          </mfrac>
 +
          </mrow>
 +
        </math>
 
   
 
   
 
   
 
   
  > <math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
+
<p>Table 1 provides the remaining variable values.</p>
        <mrow>
+
          <mi mathvariant="normal">Δ</mi>
+
          <mrow>
+
            <mi>G</mi>
+
            <mo stretchy="false">=</mo>
+
            <mrow>
+
            <msup>
+
              <mi>G</mi>
+
              <mi mathvariant="italic">bound</mi>
+
            </msup>
+
            <mo stretchy="false">−</mo>
+
            <msup>
+
              <mi>G</mi>
+
              <mi mathvariant="italic">unbound</mi>
+
            </msup>
+
            </mrow>
+
          </mrow>
+
          </mrow>
+
        </math>
+
     
+
   
+
+
 
+
<p> </p>
+
 
+
<h4>I.2) Effect of arm length</h4>
+
 
+
<p>  </p>
+
 
+
<h4>I.3) Numerical evaluation</h4>
+
  
 
<div class="panel panel-default" style="max-width:600px">
 
<div class="panel panel-default" style="max-width:600px">
Line 1,111: Line 1,221:
 
       </table>
 
       </table>
 
     </div>
 
     </div>
 +
<h4>I.3) Numerical evaluation</h4>
  
 +
<p>We have simulated the effect of arm length on free energy (low free energy implies high binding probability) using the Born salvation free model, pair van der Waals energy, and electrostatic potential, described above. However, there are some parameters that we are not sure about (Equivalent charge and Hamacker coefficient of Zinc fingers, equivalent charge and Hamacker coefficient of base pair) that depend on charge distribution of the DNA strand, which should be determined experimentally as boundary conditions. Alternatively, one could consider each base pair with independent charge.</p>
  
<h3>II. iGEM Matchmaker and LabSurfing (<i>Technische Universität Darmstadt</i>)</h3>
+
<p>The systems have been simulated in MATLAB.</p>
  
 +
<p>Figure 1 shows a rendering of the bacteria - arm compound (E. Coli in blue, zinc fingers in red, arms in orange).</p>
 +
 +
<figure>
 +
  <img class="img-responsive" style="max-width:500px" src="https://static.igem.org/mediawiki/2015/f/f4/NTNU_Trondheim_collaboration_rendering.png">
 +
  <figcaption><b>Figure 1.</b> Rendering of bacteria connected to DNA arms through zinc fingers expressed superficially.</figcaption>
 +
</figure>
 +
 +
<p>Figure 2 shows relative free energy against arm length. As expected, the longer the arms, the lower is the free energy, and thus the higher is the bonding probability.</p>
 +
 +
<figure>
 +
  <img class="img-responsive" style="max-width:500px" src="https://static.igem.org/mediawiki/2015/a/a0/NTNU_Trondheim_collaboration_deterministic.png">
 +
  <figcaption><b>Figure 2.</b>Effect of arm length on free energy for a constant zinc finger surface distribution.</figcaption>
 +
</figure>
 +
 +
<p>Figure 3 shows relative free energy against arm length, where the distribution of zinc fingers is randomized. We notice that the distribution of the zinc fingers plays a very important role in the binding as shown in the figure where the distribution is varied randomly, but the trend is more and less the same as when the distribution is assumed to be deterministic.
 +
</p>
 +
 +
<figure>
 +
  <img class="img-responsive" style="max-width:500px" src="https://static.igem.org/mediawiki/2015/e/e8/NTNU_Trondheim_collaboration_stochastic.png">
 +
  <figcaption><b>Figure 2.</b>Effect of arm length on free energy for randomly distributed zinc finger distribution.</figcaption>
 +
</figure>
 +
 +
<h4>I.4) Conclusion</h4>
 +
<p>The bead approximation and thermodynamic information theoretical framework we proposed effectively captures the challenge of modeling binding probability where different DNA strands compete in binding with a multitude of zinc fingers. The model takes into account the geometry and charge magnitude distribution on the bacteria and the DNA strands.</p>
 +
 +
<h4>I.5) Downloadable content</h4>
 +
<p><a href="https://static.igem.org/mediawiki/2015/3/3f/NTNU_Trondheim_Warwick_Matlab_code.zip"><code>NTNU_Trondheim_Warwick_Matlab_code.zip</code></a></p>
 +
 +
<h4>I.5) References</h4>
 +
<p>
 +
<ol>
 +
<li>Chahibi, Y.; Akyildiz, I.F.; Balasubramaniam, S.; Koucheryavy, Y., "Molecular Communication Modeling of Antibody-Mediated Drug Delivery Systems," in Biomedical Engineering, IEEE Transactions on , vol.62, no.7, pp.1683-1695, July 2015
 +
doi: 10.1109/TBME.2015.2400631</li>
 +
<li>Stormo, Gary D., and Yue Zhao. "Determining the specificity of protein–DNA interactions." Nature Reviews Genetics 11.11 (2010): 751-760.
 +
APA
 +
</li>
 +
</ol>
 +
</p>
 +
 +
<h3 id="darmstadt" >II. iGEM Matchmaker and LabSurfing (<i>Technische Universität Darmstadt</i>)</h3>
 +
 +
<p> <a href="https://2015.igem.org/Team:TU_Darmstadt">Team TU Darmstadt</a> noticed our match making algorithm and thought that their LabSurfing platform would complement each other. LabSurfing is a website for all iGEM teams and their members to be able to stay in contact with the iGEM community after finishing the annual project. The second main advantage is the opportunity for iGEM teams to get to know each other early in the competition. This facilitates meetups and collaborations right from the beginning. We plan to reserve a breakout room at the Giant Jamboree to present our side  roject Matchmaker alongside LabSurfing in the same room, so you also get the chance to present your application in one poster. The two websites will link to each other so that teams can find teams to get in touch with through the iGEM matchmaker, and use social network tools using LabSurfing.</p>
 +
 +
<p>
 +
</p>
  
 
<br>
 
<br>

Latest revision as of 00:42, 19 September 2015


I. Brixells modeling (University of Warwick)

Team Warwick has shown interest in our offer to help in modeling and quantitative analysis that we have posted on the iGEM Matchmaker. Team Warwick is aiming to provide precision control over spatial arrangement of cells by designing a tool that enables drawing and building with them.

Zinc finger proteins are intracellular molecules which recognize and bind unique dsDNA sequences. We have engineered these proteins to be expressed on the surface of an E. coli cell, such that dsDNA can be used as mortar to cement cells together. Team Warwick plans to demonstrate this principle by assembling fluorescent cells onto a 2D surface and producing microscopic images, with the ultimate goal being to build complex 3D structures comprised of different cell types. This level of control over cellular localisation is useful in multiple fields including research into cell-cell interactions in microbial communities, multicellularity, and the construction of 3D cell structures in tissue engineering.

The collaboration focused on two elements:

  1. Calculating the probability of formation, including the probability of E. Coli bonding correctly.

  2. Calculating the effect of arm length on structure changes increases. This has been motivated by the observation that the longer the arms the higher the likelihood that the e.coli cells can attach because they are less closely packed and such wouldn't get in each others way.

There are many methods to look at this kind of problems, but the most realistic may require huge computational resources. So it is necessary to find an approach that is experimentally relevant, computationally tractable, and reflecting the biophysics underlying Brixells.

We, Team NTNU Trondheim have offered ideas, modeling frameworks, software simulation, and data analysis to answer these questions, based on information theory and thermodynamics. For Problem 1, we have suggested an approach in terms of binding affinity and specificity where the information entropy is used as a measure of specificity. For Problem 2, we have suggested a thermodynamics approach using the Poisson-Boltzmann theory where the zinc fingers and E. Coli are approximated by a set of beads (one large bead for the E. Coli, small beads for each zinc finger, and a rod of beads for the DNA arm. Team Warwick has been enthusiastic about this approach since it is a stochastic method that they have not considered, and they have provided that us with data related to the geometry of E. Coli-arm formation.

I.1) Probability of bond formation

The probability of bond formation P is equal for all different types of fingers i can be expressed as the product of the probability of formation for each zinc finger Pi :

P = i P i

This is a clear measure of how strong the structure is.

The probability of formation for a zinc finger i is expressed as a function of the specificity.

P i = S i W ( S i )

where W is the product log function and Si is the specificity which is the information theoretical Shannon "mutual information", and is expressed as follows:

S i = j K i , j j K i , j ln ( K i , j K i , j )

That calculates the specificity of one zinc finger, i.e. how well a zinc finger binds specifically to an arm when it is competing with other zinc fingers. K i , j is the binding affinity of zinc finger i specifically to arm j.

The binding affinity is related to the binding probability P i , j bound according to the following equation:

P i , j bound = [ F i ] [ F i ] + K i , j

where A i is the the arm i and F j is the the finger j, which are governed by the following ligand-binding reaction:

A i + F j A i F j

I.2) Effect of arm length

In order to account for the arm length. It is important to express the binding affinity to the geometry of the system consisting of one arm and one zinc finger. We dropp the indices i and j in the following for simplicity.

K i , j = e G RT

We approximate the bacteria, the zinc fingers, and the DNA arm by a set of beads. The bacteria becomes one large sphere, the zinc finger one small sphere, and the DNA arm becomes a rod consisting of a cascade of beads.

Using these assumptions, the free energy can be calculated from geometrical and electrochemical considerations. In other words, knowing the positions, radii, and charge magnitudes on the beads, the binding free energy of the system is directly calculated as follows.

Δ G = G bound G unbound

where G bound is the bound free energy expressed as:

G bound = m , n = 1 n m M + N ( S m , n + V m , n + E m , n )

and G unbound is the unbound free energy expressed as:

G unbound = m , n = 1 n m N ( S m , n + V m , n + E m , n ) + m , n = N + 1 n m M + N ( S m , n + V m , n + E m , n )

where m and n are bead indices, M and N are the number of beads in each subsystem.

R m , n is the distance between two beads. ρ m is the radius of a bead m, and q m is the charge magnitude of a bead m.

where E m , n is the electrostatic energy potential expressed as:

E m , n = q m q n 8 π ϵ R m , n 2

V m , n is the van Der Waals force potential expressed as:

V m , n = A 6 ( 2 ρ m ρ n R m , n 2 ( ρ m + ρ n ) 2 + 2 ρ m ρ n R m , n 2 ( ρ m ρ n ) 2 + ln ( R m , n 2 ( ρ m + ρ n ) 2 R m , n 2 ( ρ m ρ n ) 2 ) )

and S m , n is the pair solvent energy expressed as:

S m , n = 1 8 π ( 1 ε 0 1 ε ) q m q n f m , n

with

f m , n = R m , n 2 + ρ m ρ n e g m , n

and

g m , n = R m , n 4 ρ m ρ n

Table 1 provides the remaining variable values.

Table 1 - System parameters
Description Symbol Value
Zinc finger radius q zinc 2 1.60217662 10 19 C
Base pair equivalent bead radius R bead 1.5 bp ( 1 bp = 350 pm )
DNA arm length L arm 150 bp 1500 bp
DNA arm bead charge magnitude N zinc 2 1.60217662 10 19 C
Real gas constant R 8.3144598
Temperature T 300 K
Absolute permittivity ε 8.854187817 10 12 F / m
Relative permittivity of water ε r 88
Hamaker coefficient of nucleotide A 6 10 10
Dielectric constant of water ϵ 80.4

I.3) Numerical evaluation

We have simulated the effect of arm length on free energy (low free energy implies high binding probability) using the Born salvation free model, pair van der Waals energy, and electrostatic potential, described above. However, there are some parameters that we are not sure about (Equivalent charge and Hamacker coefficient of Zinc fingers, equivalent charge and Hamacker coefficient of base pair) that depend on charge distribution of the DNA strand, which should be determined experimentally as boundary conditions. Alternatively, one could consider each base pair with independent charge.

The systems have been simulated in MATLAB.

Figure 1 shows a rendering of the bacteria - arm compound (E. Coli in blue, zinc fingers in red, arms in orange).

Figure 1. Rendering of bacteria connected to DNA arms through zinc fingers expressed superficially.

Figure 2 shows relative free energy against arm length. As expected, the longer the arms, the lower is the free energy, and thus the higher is the bonding probability.

Figure 2.Effect of arm length on free energy for a constant zinc finger surface distribution.

Figure 3 shows relative free energy against arm length, where the distribution of zinc fingers is randomized. We notice that the distribution of the zinc fingers plays a very important role in the binding as shown in the figure where the distribution is varied randomly, but the trend is more and less the same as when the distribution is assumed to be deterministic.

Figure 2.Effect of arm length on free energy for randomly distributed zinc finger distribution.

I.4) Conclusion

The bead approximation and thermodynamic information theoretical framework we proposed effectively captures the challenge of modeling binding probability where different DNA strands compete in binding with a multitude of zinc fingers. The model takes into account the geometry and charge magnitude distribution on the bacteria and the DNA strands.

I.5) Downloadable content

NTNU_Trondheim_Warwick_Matlab_code.zip

I.5) References

  1. Chahibi, Y.; Akyildiz, I.F.; Balasubramaniam, S.; Koucheryavy, Y., "Molecular Communication Modeling of Antibody-Mediated Drug Delivery Systems," in Biomedical Engineering, IEEE Transactions on , vol.62, no.7, pp.1683-1695, July 2015 doi: 10.1109/TBME.2015.2400631
  2. Stormo, Gary D., and Yue Zhao. "Determining the specificity of protein–DNA interactions." Nature Reviews Genetics 11.11 (2010): 751-760. APA

II. iGEM Matchmaker and LabSurfing (Technische Universität Darmstadt)

Team TU Darmstadt noticed our match making algorithm and thought that their LabSurfing platform would complement each other. LabSurfing is a website for all iGEM teams and their members to be able to stay in contact with the iGEM community after finishing the annual project. The second main advantage is the opportunity for iGEM teams to get to know each other early in the competition. This facilitates meetups and collaborations right from the beginning. We plan to reserve a breakout room at the Giant Jamboree to present our side roject Matchmaker alongside LabSurfing in the same room, so you also get the chance to present your application in one poster. The two websites will link to each other so that teams can find teams to get in touch with through the iGEM matchmaker, and use social network tools using LabSurfing.