|
|
(31 intermediate revisions by 3 users not shown) |
Line 9: |
Line 9: |
| .container{ | | .container{ |
| position:absolute; | | position:absolute; |
− | width:95%; | + | width:1281.55px; |
− | left:5%; | + | left:67.45px; |
| height:2000px; | | height:2000px; |
| z-index:0; | | z-index:0; |
Line 23: |
Line 23: |
| left:0; | | left:0; |
| height:2000px; | | height:2000px; |
− | width:5%; | + | width:67.45px; |
| background-image:url(https://static.igem.org/mediawiki/2015/8/8c/WHU-China_left.png); | | background-image:url(https://static.igem.org/mediawiki/2015/8/8c/WHU-China_left.png); |
| z-index:0; | | z-index:0; |
Line 91: |
Line 91: |
| | | |
| .secmenu ul li{ | | .secmenu ul li{ |
| + | margin-top:15px; |
| height:40px; | | height:40px; |
| width:150px; | | width:150px; |
Line 101: |
Line 102: |
| .secmenu ul li a{ | | .secmenu ul li a{ |
| line-height:20px; | | line-height:20px; |
− | font-family: 'Lato', sans-serif; | + | font-family: Helvetica,Arial,Akzidenz-Grotesk,Univers,Frutiger; |
| font-size:18px; | | font-size:18px; |
| color:#000; | | color:#000; |
Line 131: |
Line 132: |
| z-index:1; | | z-index:1; |
| opacity:0.05; | | opacity:0.05; |
| + | filter:Alpha(opacity=5); |
| } | | } |
| #pagenum{ | | #pagenum{ |
Line 183: |
Line 185: |
| font-size:18px; | | font-size:18px; |
| } | | } |
| + | #next{ |
| + | position:absolute; |
| + | left:40px; |
| + | top:540px; |
| + | z-index:100; |
| + | -webkit-transition: all 0.3s ease; |
| + | -moz-transition: all 0.3s ease; |
| + | -o-transition: all 0.3s ease; |
| + | transition: all 0.3s ease; |
| + | } |
| + | #fixedmenu{ |
| + | width:200px; |
| + | right:20px; |
| + | bottom:100px; |
| + | position:fixed; |
| + | z-index:100; |
| + | background-color:#FFF; |
| + | border-radius:60px; |
| + | -moz-border-radius: 60px; |
| + | -webkit-border-radius: 60px; |
| + | } |
| </style> | | </style> |
| <script> | | <script> |
Line 193: |
Line 216: |
| return num_member; | | return num_member; |
| } | | } |
| + | else{return 1;} |
| } | | } |
| </script> | | </script> |
Line 206: |
Line 230: |
| } | | } |
| function myfun(){ | | function myfun(){ |
− | fun(5); | + | fun(2); |
| num_member= request(); | | num_member= request(); |
| setTimeout("document.getElementById('member"+num_member+"').style.display='block'",1200); | | setTimeout("document.getElementById('member"+num_member+"').style.display='block'",1200); |
Line 215: |
Line 239: |
| break; | | break; |
| case 2: | | case 2: |
− | document.getElementById("pagenum").src="https://static.igem.org/mediawiki/2015/6/61/WHU-China_num2.png"; | + | document.getElementById("pagenum").src="https://static.igem.org/mediawiki/2015/3/3c/WHU-China_num1.png"; |
| break; | | break; |
| case 3: | | case 3: |
− | document.getElementById("pagenum").src="https://static.igem.org/mediawiki/2015/3/3c/WHU-China_num1.png" | + | document.getElementById("pagenum").src="https://static.igem.org/mediawiki/2015/6/61/WHU-China_num2.png" |
| break; | | break; |
| case 4: | | case 4: |
− | document.getElementById("pagenum").src="https://static.igem.org/mediawiki/2015/6/61/WHU-China_num2.png" | + | document.getElementById("pagenum").src="https://static.igem.org/mediawiki/2015/4/4c/WHU-China_num3.png" |
| break; | | break; |
| case 5: | | case 5: |
− | document.getElementById("pagenum").src="https://static.igem.org/mediawiki/2015/4/4c/WHU-China_num3.png"; | + | document.getElementById("pagenum").src="https://static.igem.org/mediawiki/2015/2/29/WHU-China_num4.png"; |
| break; | | break; |
| case 6: | | case 6: |
Line 242: |
Line 266: |
| window.onload=myfun; | | window.onload=myfun; |
| function next_member(){ | | function next_member(){ |
− | if(num_member==11){ | + | if(num_member==9){ |
| alert("the last page"); | | alert("the last page"); |
| return ; | | return ; |
Line 256: |
Line 280: |
| break; | | break; |
| case 2: | | case 2: |
− | document.getElementById("pagenum").src="https://static.igem.org/mediawiki/2015/6/61/WHU-China_num2.png"; | + | document.getElementById("pagenum").src="https://static.igem.org/mediawiki/2015/3/3c/WHU-China_num1.png"; |
| break; | | break; |
| case 3: | | case 3: |
− | document.getElementById("pagenum").src="https://static.igem.org/mediawiki/2015/3/3c/WHU-China_num1.png" | + | document.getElementById("pagenum").src="https://static.igem.org/mediawiki/2015/6/61/WHU-China_num2.png" |
| break; | | break; |
| case 4: | | case 4: |
− | document.getElementById("pagenum").src="https://static.igem.org/mediawiki/2015/6/61/WHU-China_num2.png" | + | document.getElementById("pagenum").src="https://static.igem.org/mediawiki/2015/4/4c/WHU-China_num3.png" |
| break; | | break; |
| case 5: | | case 5: |
− | document.getElementById("pagenum").src="https://static.igem.org/mediawiki/2015/4/4c/WHU-China_num3.png"; | + | document.getElementById("pagenum").src="https://static.igem.org/mediawiki/2015/2/29/WHU-China_num4.png"; |
| break; | | break; |
| case 6: | | case 6: |
Line 295: |
Line 319: |
| break; | | break; |
| case 2: | | case 2: |
− | document.getElementById("pagenum").src="https://static.igem.org/mediawiki/2015/6/61/WHU-China_num2.png"; | + | document.getElementById("pagenum").src="https://static.igem.org/mediawiki/2015/3/3c/WHU-China_num1.png"; |
| break; | | break; |
| case 3: | | case 3: |
− | document.getElementById("pagenum").src="https://static.igem.org/mediawiki/2015/4/4c/WHU-China_num3.png"; | + | document.getElementById("pagenum").src="https://static.igem.org/mediawiki/2015/6/61/WHU-China_num2.png" |
| break; | | break; |
| case 4: | | case 4: |
− | document.getElementById("pagenum").src="https://static.igem.org/mediawiki/2015/2/29/WHU-China_num4.png"; | + | document.getElementById("pagenum").src="https://static.igem.org/mediawiki/2015/4/4c/WHU-China_num3.png" |
| break; | | break; |
| case 5: | | case 5: |
− | document.getElementById("pagenum").src="https://static.igem.org/mediawiki/2015/3/3c/WHU-China_num1.png"; | + | document.getElementById("pagenum").src="https://static.igem.org/mediawiki/2015/2/29/WHU-China_num4.png"; |
| break; | | break; |
| case 6: | | case 6: |
− | document.getElementById("pagenum").src="https://static.igem.org/mediawiki/2015/6/61/WHU-China_num2.png"; | + | document.getElementById("pagenum").src="https://static.igem.org/mediawiki/2015/3/3c/WHU-China_num1.png"; |
| break; | | break; |
| case 7: | | case 7: |
− | document.getElementById("pagenum").src="https://static.igem.org/mediawiki/2015/4/4c/WHU-China_num3.png"; | + | document.getElementById("pagenum").src="https://static.igem.org/mediawiki/2015/6/61/WHU-China_num2.png"; |
| break; | | break; |
| case 8: | | case 8: |
− | document.getElementById("pagenum").src="https://static.igem.org/mediawiki/2015/2/29/WHU-China_num1.png"; | + | document.getElementById("pagenum").src="https://static.igem.org/mediawiki/2015/3/3c/WHU-China_num1.png"; |
| break; | | break; |
| case 9: | | case 9: |
| document.getElementById("pagenum").src="https://static.igem.org/mediawiki/2015/6/61/WHU-China_num2.png"; | | document.getElementById("pagenum").src="https://static.igem.org/mediawiki/2015/6/61/WHU-China_num2.png"; |
− | break;
| |
− | case 10:
| |
− | document.getElementById("pagenum").src="https://static.igem.org/mediawiki/2015/4/4c/WHU-China_num3.png";
| |
− | break;
| |
− | case 11:
| |
− | document.getElementById("pagenum").src="https://static.igem.org/mediawiki/2015/2/29/WHU-China_num4.png";
| |
| break; | | break; |
| } | | } |
Line 330: |
Line 348: |
| <body> | | <body> |
| <div class="left"> | | <div class="left"> |
| + | </div> |
| + | <img src="https://static.igem.org/mediawiki/2015/d/d1/WHU-China_next.png" id="next" /> |
| + | <div id="fixedmenu"> |
| + | <span style="border-bottom:1px"> |
| + | <h2>Links</h2> |
| + | <ul style="padding:0;list-style:none"> |
| + | <li><a href="https://2015.igem.org/Team:WHU-China/Description?num=3">The Criticality Detector</a></li> |
| + | <li><a href="https://2015.igem.org/Team:WHU-China/Description?num=6">Binary System</a></li> |
| + | <li><a href="https://2015.igem.org/Team:WHU-China/Description?num=8">The Dosage Control System</a></li> |
| + | <li><a href="https://2015.igem.org/Team:WHU-China/Parts">Parts</a></li> |
| + | <li><a href="https://2015.igem.org/Team:WHU-China/Result">Results</a></li> |
| + | </ul> |
| + | </span> |
| </div> | | </div> |
| <div class="container"> | | <div class="container"> |
Line 351: |
Line 382: |
| <li style="position:absolute;margin-left:172px;bottom:-23px"> | | <li style="position:absolute;margin-left:172px;bottom:-23px"> |
| <nav> | | <nav> |
− | <a href="javascript:return false"><img src="https://static.igem.org/mediawiki/2015/9/97/WHU-China_PR1.png" onclick="fun(2)" /></a> | + | <a href="https://2015.igem.org/Team:WHU-China/Description"><img src="https://static.igem.org/mediawiki/2015/9/97/WHU-China_PR1.png"/></a> |
| </nav> | | </nav> |
| </li> | | </li> |
Line 366: |
Line 397: |
| <li style="position:absolute;margin-left:449px;bottom:3px"> | | <li style="position:absolute;margin-left:449px;bottom:3px"> |
| <nav> | | <nav> |
− | <a href="javascript:return false"><img src="https://static.igem.org/mediawiki/2015/6/63/WHU-China_HP1.png" onclick="fun(5)" /></a> | + | <a href="https://2015.igem.org/Team:WHU-China/Practices"><img src="https://static.igem.org/mediawiki/2015/6/63/WHU-China_HP1.png"/></a> |
| </nav> | | </nav> |
| </li> | | </li> |
| <li style="position:absolute;margin-left:540px;bottom:-22px"> | | <li style="position:absolute;margin-left:540px;bottom:-22px"> |
| <nav> | | <nav> |
− | <a href="javascript:return false"><img src="https://static.igem.org/mediawiki/2015/2/29/WHU-China_MO1.png" onclick="fun(6)" /></a> | + | <a href="https://2015.igem.org/Team:WHU-China/Modeling"><img src="https://static.igem.org/mediawiki/2015/2/29/WHU-China_MO1.png"/></a> |
| </nav> | | </nav> |
| </li> | | </li> |
Line 388: |
Line 419: |
| </ul> | | </ul> |
| <ul id="tit2"> | | <ul id="tit2"> |
− | <li><a href="https://2015.igem.org/Team:WHU-China/Description?num=1">Overview</a></li> | + | <li><a href="https://2015.igem.org/Team:WHU-China/Description?num=1">Description</a></li> |
| <li><a href="https://2015.igem.org/Team:WHU-China/Description?num=3">Criticality Detector</a></li> | | <li><a href="https://2015.igem.org/Team:WHU-China/Description?num=3">Criticality Detector</a></li> |
| <li><a href="https://2015.igem.org/Team:WHU-China/Description?num=6">Binary System</a></li> | | <li><a href="https://2015.igem.org/Team:WHU-China/Description?num=6">Binary System</a></li> |
| <li><a href="https://2015.igem.org/Team:WHU-China/Description?num=8">Dosage Control System</a></li> | | <li><a href="https://2015.igem.org/Team:WHU-China/Description?num=8">Dosage Control System</a></li> |
− | <li><a href="javascript:return false;">Results</a></li> | + | <li><a href="https://2015.igem.org/Team:WHU-China/Results">Results</a></li> |
| + | <li><a href="https://2015.igem.org/Team:WHU-China/Judging">Judging Book</a></li> |
| </ul> | | </ul> |
| <ul id="tit3"> | | <ul id="tit3"> |
| <li><a href="https://2015.igem.org/Team:WHU-China/Parts">Team Parts</a></li> | | <li><a href="https://2015.igem.org/Team:WHU-China/Parts">Team Parts</a></li> |
− | <li><a href="https://2015.igem.org/Team:WHU-China/Basic_Parts">Basis Parts</a></li> | + | <li><a href="https://2015.igem.org/Team:WHU-China/Basic_Part">Basic Parts</a></li> |
− | <li><a href="https://2015.igem.org/Team:WHU-China/Composite_Part">Composite Parts</a></li>
| + | |
− | <li><a href="javascript:return false;">Favorite Parts</a></li>
| + | |
| </ul> | | </ul> |
| <ul id="tit4"> | | <ul id="tit4"> |
Line 441: |
Line 471: |
| <div class="textarea"> | | <div class="textarea"> |
| <div class="editarea" id="member1"> | | <div class="editarea" id="member1"> |
− | <h2>Description</h2> | + | <h2 style="display:inline; float:left">Description</h2> |
| + | <h2 style="display:inline; float:right">Page 1 of 1</h2> |
| <div class="member"> | | <div class="member"> |
− | <span>A signal filter that simplifies complex vibration is vital in information processing [1]. This summer, we aim to build one and explore its application in biocomputing and oral health care. Light inputs are achieved by our light-sensing protein and then further processed by a negative feedback circuit [2]. <a href="https://2015.igem.org/Team:WHU-China/Description?num=3">The criticality detector</a> generates pulse output when the input’s vibration exceeds predefined threshold. For biocomputing, the detector is equipped with a <a href="https://2015.igem.org/Team:WHU-China/Description?num=6">binary system</a> to store information in a “living register”. For oral health care, the detector is used to control the dosage of a powerful drug <sup>[3]</sup> in <a href="https://2015.igem.org/Team:WHU-China/Description?num=8">the dosage control system</a> .</span> | + | |
− | <h2>Details</h2> | + | <span>A signal filter that simplifies complex vibration is vital in information processing. This summer, we aim to build one and explore its application in biocomputing and oral health care. Light inputs are achieved by our light-sensing protein and then further processed by a negative feedback circuit. <a href="https://2015.igem.org/Team:WHU-China/Description?num=3">The criticality detector</a> generates pulse output when the input’s vibration exceeds predefined threshold. For biocomputing, the detector is equipped with a <a href="https://2015.igem.org/Team:WHU-China/Description?num=6">binary system</a> to store information in a "living register". For oral health care, the detector is used to control the dosage of a powerful drug <sup></sup> in <a href="https://2015.igem.org/Team:WHU-China/Description?num=8">the dosage control system</a>.</span> |
− | <span>Criticality detection system, which we intend to construct, combines biosensor with signal converter. The work pattern is that the system receives the specific input signal and then generates pulse output when the input’s vibration exceeds predefined threshold. </span>
| + | <span></br><strong>Biobrick Improvement</strong></span> |
− | <img src="https://static.igem.org/mediawiki/2015/2/2a/WHU-China_Fig1.png" height="400" />
| + | <span>Our project has involved CI operon site , and we find the 434 cI regulated, 434 cI is a member of the lamboid cI protein family. Because of the lack of the results,we improve this part; we inserted RBS (BBa_B0032) + GFP (BBa_E0040) +Terminator(BBa_B0010, BBa_B0012) into the downstream of it. We have intended to measure its fluorescence value. Furthermore, we created a mutant of Part BBa_R0052. In order to further test and verify the part’s function.</span> |
− | <span style="margin-top:410px">Fig.1 The schematic diagram indicating the relationship between input and output.</span>
| + | <span>we improved the characterization of the existing BioBrick Parts: <a href="http://parts.igem.org/Part:BBa_R0052">BBa_R0052</a></span> |
| </div> | | </div> |
| </div> | | </div> |
| <div class="editarea" id="member2"> | | <div class="editarea" id="member2"> |
− | <h2>Description</h2>
| + | <h2 style="display:inline; float:left">Criticality Detector</h2> |
− | <div class="member">
| + | <h2 style="display:inline; float:right">Page 1 of 4</h2> |
− | <span>The detection of threshold is achieved with the help of a red-light-sensing part and a specially designed negative feedback circuit. A fusion protein called Cph8 senses red light and activates three OmpC promoters when red light intensity in the environment drops below a threshold. An output (GFP) keeps being generated until it is inhibited by the negative feedback circuit we built (see Fig.2). A relatively long feedback circuit was designed to generate pulse of good intensity and modularity.
| + | <div class="member"> |
− | </span> | + | <span>The design of our criticality detector came occasionally from a paper about edge detection (A Synthetic Genetic Edge Detection Program.Jeffrey J. Tabor etc. j.cell.2009.04.048 ). Their gene circuit detects edge by recognizing the diffusion near the boundary of an object. Essentially speaking, they use a limitation of diffusion and the spatial distribution it causes to mark the edge. Inspired by their work, we use the same light-sensing part with strong respond to red light and add a negative feedback circuit to create a delay to mark the threshold (see Fig.1). Our detecter is design to receives the specific input signal and then generates pulse output when the input’s vibration exceeds predefined threshold (see Fig.2).</span> |
− | <span>Considering the system construction and work pattern, our criticality detection system can function as a pulse generator, a signal filter and so on. In our case, the module is proved to have potential application in biocomputer development and health care.</span>
| + | <img src="https://static.igem.org/mediawiki/2015/7/7c/WHU-China_Fig2.png" height="500"> |
− | <span>Our system can be used as a signal filter in the biocomputer development. Combin-ing criticality detection system with pairs of integrase and excisionase, we set up a binary counting system composed of some two-state latch modules that switch between states "0" and "1".</span>
| + | <span style="margin-top:505px">Fig.1 The schematic diagram showing how the criticality detector works.</span> |
− | <span>Working as a pulse generator in dental caries prevention, the system release a suita-ble amount of antimicrobial peptides by adjusting the length and intensity of the pulse and maintain the population of oral flora at a satisfactory level.</span>
| + | <img src="https://static.igem.org/mediawiki/2015/2/2a/WHU-China_Fig1.png" height="450"> |
− | <img src="https://static.igem.org/mediawiki/2015/7/7c/WHU-China_Fig2.png" height="400"/>
| + | <span style="margin-top:455px">Fig.2 The schematic diagram indicating the relationship between input and output.</span> |
− | <span style="margin-top:410px">Fig.2 The schematic diagram showing how the criticality detector works.</span>
| + | |
| </div> | | </div> |
| </div> | | </div> |
| <div class="editarea" id="member3"> | | <div class="editarea" id="member3"> |
− | <h2>Criticality Detector</h2> | + | <h2 style="display:inline; float:left">Criticality Detector</h2> |
| + | <h2 style="display:inline; float:right">Page 2 of 4</h2> |
| <div class="member"> | | <div class="member"> |
− | <span>The design of our criticality detector came occasionally from a paper about edge detection (A Synthetic Genetic Edge Detection Program.Jeffrey J. Tabor etc. j.cell.2009.04.048 ). Their gene circuit detects edge by recognizing the diffusion near the boundary of an object. Essentially speaking, they use a limitation of diffusion and the spatial distribution it causes to mark the edge. Inspired by their work, we design the negative feedback circuit to create a delay to mark the threshold.</span> | + | <h2>Light-sensing part:</h2> |
− | <span>Therefore, the criticality detector could be divided into two parts: a series of protein for light-sensing and a negative feedback for pulse generating. </span>
| + | |
| <span>The light-sensing protein we use is Cph8, a chimeric protein which produces strong response to light. It consists of a light-sensing domain Cph1 and an EnvZ domain. </span> | | <span>The light-sensing protein we use is Cph8, a chimeric protein which produces strong response to light. It consists of a light-sensing domain Cph1 and an EnvZ domain. </span> |
| <span>Phococyanobilin is necessary for Cph1 to response to light, but it’s not naturally produced in E. coli. Another two genes, ho1 and pcyA, can produce two enzymes that convert the endogenous haem into phococyanobilin. Ho1 is one member of the heme oxygenases family. It functions in producing BV IXa from endogenous heme in E. coli. Ho1 catalyses stereospecific cleavage of heme and releases Fe2+ and carbon monoxide, which is the first step of phycocyanobilin synthesis. The second step is conducted by a phycocyanobilin: ferredoxin oxidoreductase (pcyA) which functions in reducing BV IXa. | | <span>Phococyanobilin is necessary for Cph1 to response to light, but it’s not naturally produced in E. coli. Another two genes, ho1 and pcyA, can produce two enzymes that convert the endogenous haem into phococyanobilin. Ho1 is one member of the heme oxygenases family. It functions in producing BV IXa from endogenous heme in E. coli. Ho1 catalyses stereospecific cleavage of heme and releases Fe2+ and carbon monoxide, which is the first step of phycocyanobilin synthesis. The second step is conducted by a phycocyanobilin: ferredoxin oxidoreductase (pcyA) which functions in reducing BV IXa. |
| </span> | | </span> |
| <span>Functioning as a kinase, the EnvZ domain could lead to autophosphorylation of an endogenous regulator OmpR when light intensity remains below threshold. Then the phosphorylated OmpR activates the ompC promoter. But when light intensity is high, autophosphorylation is inhibited and therefore, the expression stops.</span> | | <span>Functioning as a kinase, the EnvZ domain could lead to autophosphorylation of an endogenous regulator OmpR when light intensity remains below threshold. Then the phosphorylated OmpR activates the ompC promoter. But when light intensity is high, autophosphorylation is inhibited and therefore, the expression stops.</span> |
− | <img src="https://static.igem.org/mediawiki/2015/2/22/WHU-China_CD1.png" height="400"> | + | <img src="https://static.igem.org/mediawiki/2015/2/22/WHU-China_CD1.png" height="510"> |
− | <span style="margin-top:410px">Fig.1</span> | + | <span style="margin-top:520px">Fig.3 The light-sensing part.</span> |
| </div> | | </div> |
| </div> | | </div> |
| <div class="editarea" id="member4"> | | <div class="editarea" id="member4"> |
− | <h2>Criticality Detector</h2> | + | <h2 style="display:inline; float:left">Criticality Detector</h2> |
| + | <h2 style="display:inline; float:right">Page 3 of 4</h2> |
| <div class="member"> | | <div class="member"> |
| + | <h2>Negative feedback circuit</h2> |
| <span>A negative feedback circuit is constructed to shut down output while maintain it for a while, which generates a suitable pulse output. Three OmpC promoters are set to receive input. The first one controls the transcription of a CI protein with the RBS locked in a cr loop of an artificial riboregulator system. The second one controls the transcription of a taRNA which unlocks the cr loop and starts the expression of CI. The last one expresses GFP, before which is a CI binding site. When CI binds to it, GFP output would be shut down and hence a pulse is generated.</span> | | <span>A negative feedback circuit is constructed to shut down output while maintain it for a while, which generates a suitable pulse output. Three OmpC promoters are set to receive input. The first one controls the transcription of a CI protein with the RBS locked in a cr loop of an artificial riboregulator system. The second one controls the transcription of a taRNA which unlocks the cr loop and starts the expression of CI. The last one expresses GFP, before which is a CI binding site. When CI binds to it, GFP output would be shut down and hence a pulse is generated.</span> |
− | <img src="https://static.igem.org/mediawiki/2015/a/a0/WHU-China_CD2.png" height="300"> | + | <img src="https://static.igem.org/mediawiki/2015/a/a0/WHU-China_CD2.png" height="510"> |
− | <span style="margin-top:310px">Fig.2 Negative feedback circuit.</span> | + | <span style="margin-top:520px"><strong>Fig.4 Negative feedback circuit. </strong>First two OmpC promoters receive input signals and generate taRNA and output signal. The taRNA will change the structure of an artificial riboregulator and expose the RBS to make CI protein express. The CI protein will inhibit the expression of the output.</span> |
− | <span style="margin-top:20px">First two OmpC promoters receive input signals and generate taRNA and output signal. The taRNA will change the structure of an artificial riboregulator and expose the RBS to make CI protein express. The CI protein will inhibit the expression of the output.</span>
| + | |
− | <span>The different work patterns of the negative circuit in states of reaching the threshold and after reaching the threshold for a while are shown in Fig.5 and Fig.6 below.</span>
| + | |
− | <img src="https://static.igem.org/mediawiki/2015/7/74/WHU-China_CD3.png" height="300">
| + | |
− | <span style="margin-top:310px">Fig.3 The work pattern of the negative circuit when reaching the threshold.</span>
| + | |
− | <span style="margin-top:20px">The OmpC promoters receive the signal. The output and taRNA are generated. Because taRNA used to unlock riboregulator and CI protein haven’t accumulated to the predefined level, the output is maintained for a while.</span>
| + | |
| </div> | | </div> |
| </div> | | </div> |
| <div class="editarea" id="member5"> | | <div class="editarea" id="member5"> |
− | <h2>Criticality Detector</h2> | + | <h2 style="display:inline; float:left">Criticality Detector</h2> |
| + | <h2 style="display:inline; float:right">Page 4 of 4</h2> |
| <div class="member"> | | <div class="member"> |
− | <img src="https://static.igem.org/mediawiki/2015/f/f0/WHU-China_CD4.png" height="300"> | + | <h2>Working process:</h2> |
− | <span style="margin-top:310px">Fig.4 The work pattern of the negative circuit after reaching the threshold for a while.</span> | + | <span>The different work patterns of the negative circuit in states of reaching the threshold and after reaching the threshold for a while are shown in Fig.5 and Fig.6 below.</span> |
− | <span style="margin-top:20px">Remaining below the threshold for a while, taRNAs accumulate and unlock crloops to express CI proteins. When CI protein binds to its binding site, the output is blocked.</span>
| + | <img src="https://static.igem.org/mediawiki/2015/7/74/WHU-China_CD3.png" height="450"> |
| + | <span style="margin-top:455px"><strong>Fig.5 The work pattern of the negative circuit when reaching the threshold. </strong>The OmpC promoters receive the signal. The output and taRNA are generated. Because taRNA used to unlock riboregulator and CI protein haven’t accumulated to the predefined level, the output is maintained for a while.</span> |
| + | <img src="https://static.igem.org/mediawiki/2015/f/f0/WHU-China_CD4.png" height="450"> |
| + | <span style="margin-top:455px"><strong>Fig.6 The work pattern of the negative circuit after reaching the threshold for a while.</strong>Remaining below the threshold for a while, taRNAs accumulate and unlock crloops to express CI proteins. When CI protein binds to its binding site, the output is blocked.</span> |
| </div> | | </div> |
| </div> | | </div> |
| <div class="editarea" id="member6"> | | <div class="editarea" id="member6"> |
− | <h1>Binary System</h1> | + | <h2 style="display:inline; float:left">Binary System</h2> |
| + | <h2 style="display:inline; float:right">Page 1 of 2</h2> |
| <div class="member"> | | <div class="member"> |
| <span>Inspired by the bidirectional DNA flipping system illustrated by Jerome Bonnet, etc in 2012[1], we are planning a binary counting system, using the mechanism of serine recombinases. The counting system is expected to record the number of certain stimulation by the direction states of the registers, which are under the control of serine recombinases. The stimulation should be normalized by the criticality detection system to ensure that the stimulation is properly dealt with. </span> | | <span>Inspired by the bidirectional DNA flipping system illustrated by Jerome Bonnet, etc in 2012[1], we are planning a binary counting system, using the mechanism of serine recombinases. The counting system is expected to record the number of certain stimulation by the direction states of the registers, which are under the control of serine recombinases. The stimulation should be normalized by the criticality detection system to ensure that the stimulation is properly dealt with. </span> |
Line 509: |
Line 542: |
| </div> | | </div> |
| <div class="editarea" id="member7"> | | <div class="editarea" id="member7"> |
− | <h2>Binary System</h2> | + | <h2 style="display:inline; float:left">Binary System</h2> |
| + | <h2 style="display:inline; float:right">Page 2 of 2</h2> |
| <div class="member"> | | <div class="member"> |
| <h2>Future work</h2> | | <h2>Future work</h2> |
Line 519: |
Line 553: |
| </div> | | </div> |
| <div class="editarea" id="member8"> | | <div class="editarea" id="member8"> |
− | <h1>Dosage control system</h1> | + | <h2 style="display:inline; float:left">Dosage Control System</h2> |
| + | <h2 style="display:inline; float:right">Page 1 of 2</h2> |
| <div class="member"> | | <div class="member"> |
| <h2>Idea to put the criticality detector into practice</h2> | | <h2>Idea to put the criticality detector into practice</h2> |
Line 529: |
Line 564: |
| | | |
| <h2>How to control the population of S.mutans</h2> | | <h2>How to control the population of S.mutans</h2> |
− | <span>Antimicrobial peptides are recently regarded as a promising choice to kill microbes due to their strong microbicidal effects and their unlikeliness of triggering resistance in microorganisms. Since there are also various kinds of probiotics living in our mouth besides oral pathogens, and since antimicrobial peptides have effect on general kinds of microorganisms, it’s more wise to modify the antimicrobial peptide into a targeted one by adding a S.mutans targeted sequence on the N-terminal, so that only S.mutans can be killed. Thus we design two fused peptides, CAP-glyglygly-Bac8c and CAP-glyglygly-APP2, to targetedly inhibit the growth of S.mutans in oral cavity, where CAP is an optimized peptide that can specifically bind to the comD receptor on the surface of S.mutans, while Bac8c and APP2 are two kinds of peptides that assume strong bactericidal effect in acidic environment. | + | <span>Antimicrobial peptides are recently regarded as a promising choice to kill microbes due to their strong microbicidal effects and their unlikeliness of triggering resistance in microorganisms. Since there are also various kinds of probiotics living in our mouth besides oral pathogens, and since antimicrobial peptides have effect on general kinds of microorganisms, it’s more wise to modify the antimicrobial peptide into a targeted one by adding a S.mutans targeted sequence on the N-terminal, so that only S.mutans can be killed. Thus we design two fused peptides, CAP-glyglygly-Bac8c and CAP-glyglygly-AAP2, to targetedly inhibit the growth of S.mutans in oral cavity, where CAP is an optimized peptide that can specifically bind to the comD receptor on the surface of S.mutans, while Bac8c and AAP2 are two kinds of peptides that assume strong bactericidal effect in acidic environment. |
| <br /></span> | | <br /></span> |
| | | |
| <h2>How to construct the antimicrobial peptide expression circuit</h2> | | <h2>How to construct the antimicrobial peptide expression circuit</h2> |
− | <span>We first fuse CAP and Bac8c(or APP2) with linker “-glyglygly-” to construct targeted antimicrobial peptides. Then in order to prove their function, we express them in Pet28a with the induction of IPTG, and observe their bactericidal effect on E.coli and S.mutans to see if they have targeted effect. And finally we add criticality detector circuit on the upstream of antimicrobial peptide expression gene to control its expression, and use acid sensitive promoter AsR as the input signal sensor of criticality detector to complete the whole system. </span> | + | <span>We first fuse CAP and Bac8c(or AAP2) with linker “-glyglygly-” to construct targeted antimicrobial peptides. Then in order to prove their function, we express them in Pet28a with the induction of IPTG, and observe their bactericidal effect on E.coli and S.mutans to see if they have targeted effect. And finally we add criticality detector circuit on the upstream of antimicrobial peptide expression gene to control its expression, and use acid sensitive promoter AsR as the input signal sensor of criticality detector to complete the whole system. </span> |
| </div> | | </div> |
| </div> | | </div> |
| <div class="editarea" id="member9"> | | <div class="editarea" id="member9"> |
| + | <h2 style="display:inline; float:left">Dosage Control System</h2> |
| + | <h2 style="display:inline; float:right">Page 2 of 2</h2> |
| <div class="member"> | | <div class="member"> |
| <img src="https://static.igem.org/mediawiki/2015/6/63/WHU-China_KJT.png" width="270"></img> | | <img src="https://static.igem.org/mediawiki/2015/6/63/WHU-China_KJT.png" width="270"></img> |