Difference between revisions of "Team:Amoy/Description"

 
(49 intermediate revisions by 6 users not shown)
Line 10: Line 10:
  
 
<link rel="stylesheet" type="text/css" href="https://2015.igem.org/Template:Amoy/css/MenuBarCss?action=raw&amp;ctype=text/css" />
 
<link rel="stylesheet" type="text/css" href="https://2015.igem.org/Template:Amoy/css/MenuBarCss?action=raw&amp;ctype=text/css" />
 +
 +
<link rel="stylesheet" type="text/css" href="https://2015.igem.org/Template:Amoy/css/MenuCss?action=raw&amp;ctype=text/css" />
 +
 +
<script type="text/javascript" src="https://2015.igem.org/Template:Amoy/Javascript/MenuJs?action=raw&amp;ctype=text/javascript"></script>
  
 
</head>
 
</head>
Line 44: Line 48:
  
 
<!--top_menu-->
 
<!--top_menu-->
<div id='cssmenu'>
+
<span class="preload1"></span> <span class="preload2"></span>
<ul>
+
<ul id="nav">
  <li class='active has-sub'><a href='https://2015.igem.org/Team:Amoy/Team'>Team</a>
+
  <li class="top"><a href="https://2015.igem.org/Team:Amoy/Team" id="products" class="top_link"><span class="down">TEAM</span></a>
      <ul>
+
    <ul class="sub">
        <li class='has-sub'><a href='https://2015.igem.org/Team:Amoy/Team#member_student'>Member</a></li>
+
      <li><a href="https://2015.igem.org/Team:Amoy/Team#member_student">Member</a></li>
        <li class='has-sub'><a href='https://2015.igem.org/Team:Amoy/Member/Amoy'>Amoy</a></li>
+
       <li><a href="https://2015.igem.org/Team:Amoy/Member/Amoy">Amoy</a></li>
        <li class='has-sub'><a href='https://2015.igem.org/Team:Amoy/Attributions'>Attributions</a></li>
+
      <li><a href="https://2015.igem.org/Team:Amoy/Attributions">Attributions</a></li>
      </ul>
+
    </ul>
  </li>
+
  </li>
  <li class='has-sub'><a href='https://2015.igem.org/Team:Amoy/Project'>Project</a>
+
      <ul>
+
        <li class='has-sub'><a href='https://2015.igem.org/Team:Amoy/Description'>Description</a></li>
+
        <li class='has-sub'><a href='https://2015.igem.org/Team:Amoy/Project/Background'>Background</a></li>
+
        <li class='has-sub'><a href='https://2015.igem.org/Team:Amoy/Project/Methods'>Methods</a></li>
+
        <li class='has-sub'><a href='https://2015.igem.org/Team:Amoy/Project/Results'>Results</a></li>
+
        <li class='has-sub'><a href='https://2015.igem.org/Team:Amoy/Project/Discussion'>Discussion</a></li>
+
        <li class='has-sub'><a href='https://2015.igem.org/Team:Amoy/Project/FutureWork'>Future</a></li>
+
       </ul>
+
  </li>
+
  <li class='has-sub'><a href='https://2015.igem.org/Team:Amoy/Notebook'>Notebook</a>
+
      <ul>
+
        <li class='has-sub'><a href='https://2015.igem.org/Team:Amoy/Notebook/Notebook'>Notebook</a></li>
+
        <li class='has-sub'><a href='https://2015.igem.org/Team:Amoy/Notebook/Protocol'>Protocol</a></li>
+
        <li class='has-sub'><a href='https://2015.igem.org/Team:Amoy/Parts'>Parts</a></li>
+
        <li class='has-sub'><a href='https://2015.igem.org/Team:Amoy/Notebook/Gallery'>Gallery</a></li>
+
      </ul>
+
  </li>
+
  <li><a href='https://2015.igem.org/Team:Amoy/Interlab' style="margin-right: 30px; margin-left: 10px;">Interlab</a></li>
+
  
  <li class='has-sub'><a href='https://2015.igem.org/Team:Amoy/Newsletter'>Newsletter</a>
+
  <li class="top"><a href="https://2015.igem.org/Team:Amoy/Project" id="products" class="top_link"><span class="down active">PROJECT</span></a>
       <ul>
+
    <ul class="sub">
        <li class='has-sub'><a href='https://2015.igem.org/Team:Amoy/Newsletter/Contribution'>Contribution</a></li>
+
      <li><a href="https://2015.igem.org/Team:Amoy/Project/Background">Background</a></li>
        <li class='has-sub'><a href='https://2015.igem.org/Team:Amoy/Newsletter/Discussion'>Discussion</a></li>
+
       <li><a href="https://2015.igem.org/Team:Amoy/Description">Description</a></li>
        <li class='has-sub'><a href='https://2015.igem.org/Team:Amoy/Newsletter/Links'>Links</a></li>
+
      <li><a href="https://2015.igem.org/Team:Amoy/Project/Methods">Methods</a></li>
      </ul>
+
      <li><a href="https://2015.igem.org/Team:Amoy/Project/Results">Results</a></li>
  </li>
+
      <li><a href="https://2015.igem.org/Team:Amoy/Project/Discussion">Discussion</a></li>
  <li class='has-sub'><a href='https://2015.igem.org/Team:Amoy/Practices'>Practices</a>
+
      <li><a href="https://2015.igem.org/Team:Amoy/Project/FutureWork">Future Work</a></li>
      <ul>
+
    </ul>
        <li class='has-sub'><a href='https://2015.igem.org/Team:Amoy/Practices'>Human Practice</a></li>
+
  </li>
        <li class='has-sub'><a href='https://2015.igem.org/Team:Amoy/Practice/Communication'>Communication</a></li>
+
 
        <li class='has-sub'><a href='https://2015.igem.org/Team:Amoy/Collaborations'>Collaborations</a></li>
+
  <li class="top"><a href="https://2015.igem.org/Team:Amoy/Notebook" id="products" class="top_link"><span class="down">NOTEBOOK</span></a>
      </ul>
+
    <ul class="sub">
  </li>
+
      <li><a href="https://2015.igem.org/Team:Amoy/Notebook/Notebook">Notebook</a></li>
  <li class='has-sub'><a href='https://2015.igem.org/Team:Amoy/Judging'>Judging</a>
+
      <li><a href="https://2015.igem.org/Team:Amoy/Notebook/Protocol">Protocols</a></li>
      <ul>
+
      <li><a href="https://2015.igem.org/Team:Amoy/Parts">Parts</a></li>
        <li class='has-sub'><a href='https://2015.igem.org/Team:Amoy/Judging/Medal'>Medal Criteria</a></li>
+
      <li><a href="https://2015.igem.org/Team:Amoy/Notebook/Gallery">Gallery</a></li>
        <li class='has-sub'><a href='https://2015.igem.org/Team:Amoy/Judging/Acknowledgement'>Acknowledgement</a></li>
+
    </ul>
      </ul>
+
  </li>
  </li>
+
 
  <li><a href='https://2015.igem.org/Team:Amoy/Safety'>Safety</a></li>
+
  <li class="top"><a href="https://2015.igem.org/Team:Amoy/Interlab" id="products" class="top_link"><span class="down">INTERLAB</span></a></li>
 +
 
 +
  <li class="top"><a href="https://2015.igem.org/Team:Amoy/Newsletter" id="products" class="top_link"><span class="down">NEWSLETTER</span></a>
 +
    <ul class="sub">
 +
      <li><a href="https://2015.igem.org/Team:Amoy/Newsletter#title">Introduction</a></li>
 +
      <li><a href="https://2015.igem.org/Team:Amoy/Newsletter/Contribution">Contribution</a></li>
 +
      <li><a href="https://2015.igem.org/Team:Amoy/Newsletter/Discussion">Discussion</a></li>
 +
      <li><a href="https://2015.igem.org/Team:Amoy/Newsletter/Links">Links</a></li>
 +
    </ul>
 +
  </li>
 +
 
 +
  <li class="top"><a href="https://2015.igem.org/Team:Amoy/Practices" id="products" class="top_link"><span class="down">PRACTICES</span></a>
 +
    <ul class="sub">
 +
      <li><a href="https://2015.igem.org/Team:Amoy/Practices/Promotion">Promotion</a></li>
 +
      <li><a href="https://2015.igem.org/Team:Amoy/Practices/Talk">Talk</a></li>
 +
      <li><a href="https://2015.igem.org/Team:Amoy/Practice/Communication">Communication</a></li>
 +
      <li><a href="https://2015.igem.org/Team:Amoy/Collaborations">Collaborations</a></li>
 +
    </ul>
 +
  </li>
 +
 
 +
  <li class="top"><a href="https://2015.igem.org/Team:Amoy/Judging" id="products" class="top_link"><span class="down">JUDGING</span></a>
 +
    <ul class="sub">
 +
      <li><a href="https://2015.igem.org/Team:Amoy/Judging/Medal">Medal Criteria</a></li>
 +
      <li><a href="https://2015.igem.org/Team:Amoy/Judging/Acknowledgement">Acknowledgement</a></li>
 +
    </ul>
 +
  </li>
 +
 
 +
  <li class="top"><a href="https://2015.igem.org/Team:Amoy/Safety" id="products" class="top_link"><span class="down">SAFETY</span></a></li>
 
</ul>
 
</ul>
</div>
 
  
 
</div>
 
</div>
 +
  
  
 
<!--content-->
 
<!--content-->
<div class="col-md-1"></div>
+
<div id="main_content" style="width: 90%; margin: 0 auto; display: -webkit-box; padding-top: 50px;">
<div id="main_content" class="col-md-10">
+
  
 
<!--little_menu-->
 
<!--little_menu-->
Line 108: Line 119:
 
<a href="https://2015.igem.org/Team:Amoy/Project"><h4>Project</h4></a>
 
<a href="https://2015.igem.org/Team:Amoy/Project"><h4>Project</h4></a>
 
<ul class="ul_menu">
 
<ul class="ul_menu">
<li><a href="https://2015.igem.org/Team:Amoy/Project/Overview">Overview</a></li>
 
 
<li><a href="https://2015.igem.org/Team:Amoy/Project/Background">Background</a></li>
 
<li><a href="https://2015.igem.org/Team:Amoy/Project/Background">Background</a></li>
 +
<li><a href="https://2015.igem.org/Team:Amoy/Description">Description</a></li>
 
<li><a href="https://2015.igem.org/Team:Amoy/Project/Methods">Methods</a></li>
 
<li><a href="https://2015.igem.org/Team:Amoy/Project/Methods">Methods</a></li>
 
<li><a href="https://2015.igem.org/Team:Amoy/Project/Results">Results</a></li>
 
<li><a href="https://2015.igem.org/Team:Amoy/Project/Results">Results</a></li>
Line 117: Line 128:
 
</div>
 
</div>
  
<div class="col-md-1"></div>
 
  
<div id="title" class="col-md-9">
+
<div id="title" style="width: 70%; margin-left: 25%;">
<p id="title_p">Overview</p>
+
<p id="title_p">DESCIPTION</p>
<p class="main_p">L-tert-leucine, an unnatural amino acid, plays an important role in the pharmaceutical, agrochemical, food additives and cosmetic industry. With its special importance, many methodologies, including chemical and biological resolutions, were developed for its preparation in the past decades. Chemical resolution could be easily carried out on a large scale, however, the tedious process in low yield and the difficulties in the racemization of the opposite enantiomer were also observed. [1] Biocatalytic protocols, which can be conducted under mild conditions with high selectivity, usually offer greater benefits than chemical procedures and thus gain more and more attention from organic chemist. However, most of these biological resolution procedures are tedious and possess an inherent 50% yield limit. [2]</p>
+
<p class="main_p">L-<i>tert</i>-leucine is an unnatural amino acid which plays an important role in various industrial products, especially in pharmaceuticals. </br></br>
  
<img class="main_img" src="https://static.igem.org/mediawiki/2015/f/f7/Amoy-Project_Overview_figure1.jpg" style="width: 80%;" />
+
With its application, many methods were developed for its preparation in the past decades. Some of them have low conversion rate and poor chiral selectivity.Thirty years ago, scientists developed enzymatic reductive amination to produce L-<i>tert</i>-leucine by using leucine dehydrogenase and formate dehydrogenase. This technology greatly improved the yield and excellent enantiomeric excess value of L-<i>tert</i>-leucine. It is regarded to be one of the most efficient routes. But due to the different activity of leucine dehydrogenase and format dehydrogenase, this method is not perfect(Figuer 1) [1]. The cofactor regeneration may be broken in reaction processes.</br></p>
  
<p class="figure" style="text-align: center; margin-top: 20px; width: 80%;">Figure1. Comparison of biological method and chemical method of L-tert-leucine synthesis</p>
+
<img class="main_img" src="https://static.igem.org/mediawiki/2015/b/bd/Amoy-Project_Description_fig4.png" style="width: 100%;" />
  
<p class="main_p"></br></br>In order to solve the problem, scientists developed enzymatic reductive amination to produce L-tert-leucine by using leucine dehydrogenase and formate dehydrogenase. [6]This technology greatly improve the yield and excellent enantiomeric excess of L-tert-leucine. It is regarded to be one of the most efficient routes.</br></br>
+
<p class="figure" style="text-align: center; margin-top: 20px;"><strong>Figure 1</strong> The enzymatic reductive amination for synthesizing L-<i>tert</i>-leucine and the bug of this method</p>  
  
Owing to different activity of leucine dehydrogenase and formate dehydrogenase, the NADH consumption rate does not equal to its regeneration. Therefore, it is necessary to add excess NADH. the cofactor-NADH is an pretty expensive raw material, which will make the mass production of L-tert-leucine not cost-effective.</br></br>
+
<p class="main_p"></br></br>In order to solve this problem, we put forward many methods. The basic idea is variable control. We constructed plasmids which bear leucine dehydrogenase gene (<i>leudh</i>) and formate dehydrogenase gene (<i>fdh</i>). One plasmid which contains both leucine dehydrogenase gene and format dehydrogenase gene controls the copy numbers and the transformation efficiency. And the only variable is efficiency of ribosome binding sites or strength of promoters. So the first method is changing different ribosome binding sites. Because of the weak activity of formate dehydrogenase, we connected <i>fdh</i> with the strongest ribosome binding site from iGEM registry, which is numbered BBa_B0034. Then, we changed the ribosome binding site of <i>leudh</i>(Figure 2) [2].
 +
</br></p>
  
The circuits with gene LeuDH and with gene FDH were inserted into two <i>E.coli</i> cells separately. Then they add different wet biomass of two <i>E.coli</i> cells. [7]They hope to keep the activity of two enzyme equal through this method. Researchers using isolated enzymes find it disadvantageous because enzymes are easily destabilized in the isolation and purification process.
+
<img class="main_img" src="https://static.igem.org/mediawiki/2015/7/7b/Amoy-Project_Description_figure21.png" style="width: 100%;" />
</p>
+
  
<img class="main_img" src="https://static.igem.org/mediawiki/2015/2/2d/Amoy-Project_Overview_figure7.png" style="width: 80%;" />
+
<p class="figure" style="text-align: center; margin-top: 20px;"><strong>Figure 2</strong> Method 1: changing ribosome binding site to regulate the activity of leucine dehydrogenase</p>
  
<p class="figure" style="text-align: center; margin-top: 20px;">Figure2. Circuits inserted into two <i>E.coli</i> cells separately</p>
+
<p class="main_p"></br></br>Optimizing L-<i>tert</i>-leucine synthesis by changing the promoter is an alternative method. Promoter is also an important factor of translation process. So the second method is changing different promoters and finding out the optimal promoter.</br></br>
  
<p class="main_p"></br></br>Then researchers plan to use whole-cell biocatalyst to stabilize enzymes and reduce the need of cofactor NADH. They envisaged that a promising strategy for a successful co-expression could be based on the same inducible promoter for both genes but located on two <i>E.coli</i> plasmids with different copy numbers, producing LeuDH and FDH on a different level. FDH was inserted in the plasmid with the higher copy number, while LeuDH was inserted in the medium copy number plasmid. We hope to regulate the copy number of plasmid to ensure the continuous recycling of the cofactor NADH. Presumably, this was achieved by a higher production of FDH compared to LeuDH due to the higher copy number vector for the FDH gene. Furthermore, this LeuDH/FDH-strain is suitable for high-cell density fermentation. Compared with isolated enzymes,whole cell-catalyzed asymmetric process has many advantages, such as simple, efficient, environmentally and economically attractive. However, researchers also find that using substrate concentrations of 500mM or higher, revealed a non-satisfactory reaction course, indicating significant inhibitions effects. The activity of two enzymes are both inhibited. Obviously, successful coexpression of two genes is still a challenge for scientists.</br></br>
+
However, the parts of different ribosome binding sites and promoters which we got from the iGEM authority cannot meet our demands, because these parts are not continuously adjustable. That means we may not be able to get optimal RBS or promoter for <i>leudh</i>. However, we were illuminated by the project did by Peking University in 2011. We get the idea that we could use genetic rheostats as RBS regulators. Then, we could get the excellent RBS efficiency and use RBS calculators to edit the RBSs' sequence to a suitable efficiency(Figure 3) [3,4].</br></p>
  
So when we started to do our project though biological method, the problems are clear. One is researchers find it disadvantageous using isolated enzymes because enzymes are easily destabilized in the isolation and purification process. What's more, owing to different activities of leucine dehydrogenase and formate dehydrogenase, the NADH consumption rate does not equal to its regeneration. Therefore, it is necessary to add excess NADH. Whereas the cofactor-NADH is a pretty expensive raw material, which will make the mass production of L-tert-leucine not cost-effective. Given all these problems we plan to insert leudh and fdh to one circuit and use whole-cell biocatalyst to stabilize enzymes.
+
<img class="main_img" src="https://static.igem.org/mediawiki/2015/3/3f/Amoy-Project_Description_figure31.png" style="width: 100%;" />
</p>
+
  
<img class="main_img" src="https://static.igem.org/mediawiki/2015/0/06/Amoy-Project_Overview_figure2.png" style="width: 100%;" />
+
<p class="figure" style="text-align: center; margin-top: 20px;"><strong>Figure 3</strong> Method 3: Using genetic rheostat to regulate the activity of leucine dehydrogenase </p>
  
<p class="figure" style="text-align: center; margin-top: 20px;">Figure3. Different activities of LeuDH and FDH</p>
+
<h1 class="main_h1">Reference:</h1>
  
 
+
<p class="main_p">[1] Li, J., Pan, J., Zhang, J. & Xu, H., J. Stereoselective synthesis of L-<i>tert</i>-leucine by a newly cloned leucine dehydrogenase from Exiguobacterium sibiricum. <i>J. Mol. Catal. B-Enzym</i>. <strong>105</strong>, 11-17 (2014)</br>
<p class="main_p" style="width: 60%; padding-right: 10%; float: left; text-align: justify;"></br></br></br></br>But why do we choose one circuit containing two genes and use whole-cell catalysts? Firstly, only one fermentation is required to produce the biocatalyst compared to two separate fermentations to clone cells containing LeuDH and FDH respectively, which is much more convenient. Secondly, transforming two plasmids with different resistance to one bacterium will make the <i>E.coli</i> hard to grow. Thirdly, the biocatalyst is suitable for high-cell density fermentations. No isolation and purification of the enzymes is required. Fourthly, whole-cell catalysts can achieve the effect of premix, which help to make the two enzymes cooperate well. Fifthly, it’s good for us to control variable in one cell. Last but not least, the most attractive thing is none or only very little external cofactor is required, because it is already contained in the whole-cell biocatalyst. In a word, the method we adopt not only can save a lot of cost but also can make it easy for us to adjust the expression level of 2 genes. [3] [4] [5]</br></br>
+
[2] <a href="https://2010.igem.org/Team:Warsaw/Stage1"> http://https://2010.igem.org/Team:Warsaw/Stage1</a></br>
 
+
[3] <a href="https://2011.igem.org/Team:Peking_R/Project/RNAToolkit"> https://2011.igem.org/Team:Peking_R/Project/RNAToolkit</a></br>
Here comes our project. The whole plan is to regulate the efficiency of ribosome binding site (RBS) to control the strength of leucine dehydrogenase and formate dehydrogenase. With the help of mathematical modeling, the most suitable efficiency of RBS of leucine dehydrogenase will be obtained. Consequently, the cofctor NADH can be self-sufficient as shown in this cycle.</br></br>
+
[4] Reeve, B., Hargest, T., Gilbert, C. & Ellis T. Predicting translation initiation rates for designing synthetic biology. <i>Mini Review Article</i>. <strong>2</strong>, 1-6 (2014)
 
+
To achieve our goal, we got two gene circuits, one contains LeuDH gene and the other one contains FDH gene. We combined them together and transformed the whole circuit into <i>E.coli</i> so that two genes can express independently according to the RBS strength we arranged. Then, the <i>E.coli</i> will be broken and two enzymes are realeasd. At that moment we add the substrate trimethylpyruvic acid and ammonium formate to the system, so the cyclic catalysis begins and the leucine will be produced.</br></br>
+
 
</p>
 
</p>
 
<img class="main_img" style="width: 40%; float: right; margin-top: 50px;" src="https://static.igem.org/mediawiki/2015/d/d2/Amoy-Project_Overview_flowchart.png" />
 
<!--
 
<img class="main_img" src="https://static.igem.org/mediawiki/2015/5/56/Amoy-Project_Overview_figure3.jpg" style="width: 100%;" />
 
-->
 
 
<p class="figure" style="text-align: center; width: 40%; float: right;">Figure4. Project flowchart view</p>
 
 
<p class="main_p col-md-12" style="padding: 0px;"></br></br>We have totally constructed 3 circuits which contain different RBS pairs. Because the catalytic efficiency of FDH is much more weaker, we use the most strong RBS------B0034 for FDH, and we change the RBS for LeuDH ------B0032、B0030、B0034. As we expect, the data of expression characterization showed the circuit with B0030 and B0034 has the highest expression efficiency.
 
</p>
 
 
<img class="main_img" src="https://static.igem.org/mediawiki/2015/c/ce/Amoy-Project_Overview_figure4.png" style="display: inline-block; float: left;" />
 
<img class="main_img" src="https://static.igem.org/mediawiki/2015/7/70/Amoy-Project_Overview_figure5.png" style="display: inline-block; float: right;" />
 
<img class="main_img" src="https://static.igem.org/mediawiki/2015/b/ba/Amoy-Project_Overview_figure6.png" />
 
 
<p class="figure" style="text-align: center; margin-top: 20px;">Figure5. Gene circuits we have constructed</p>
 
 
<h1 class="main_h1"></br>Reference:</h1>
 
 
<p class="main_p">
 
[1]Gröger, H., May, O., Werner, H., Menzel, A., & Altenbuchner, J. A “Second-Generation Process” for the Synthesis of L-Neopentylglycine: Asymmetric Reductive Amination Using a Recombinant Whole Cell Catalys. <i>Organic process research & development</i>.<strong>10</strong>, 666-669 (2006)</br></br>
 
 
[2]Hong, E., Y., Cha, M., Yun, H. & Kim, B., G. Asymmetric synthesis of L-tert-leucine and L-3-hydroxyadamantyglycine using branched chain aminotransferase. <i>Journal of Molecular Catalysis B: Enzymatic</i>. <strong>66</strong>, 228-233 (2010)</br></br>
 
 
[3] Li, J., Pan, J., Zhang, J. & Xu, H., J. Stereoselective synthesis of L-tert-leucine by a newly cloned leucine dehydrogenase from Exiguobacterium sibiricum. <i>Journal of Molecular Catalysis B: Enzymatic</i>.  <strong>105</strong>, 11-17 (2014)</br></br>
 
 
[4]Zhong, J., J., Chang, D. & L., Zhang, J. Discovery and application of new bacterial strains for asymmetric synthesis of L-tert-butyl leucine in high enantioselectivity. <i>Appl. Biochem. Biotechnol.</i> <strong>164</strong>, 376–385 (2011)</br></br>
 
 
[5] Liu, W., Luo, J., Zhuang, X., Shen, W., Zhang, Y., Li,SH., Hu, Y. & Huang, H. Efficient preparation of enantiopure L-tert-leucine through immobilized penicillin G acylase catalyzed kinetic resolution in aqueous medium. <i>Biochemical Engineering Journal</i>. <strong>83</strong>, 116-120 (2014)</br></br>
 
 
[6] Gröger, H., May, O., Werner, H., Menzel, A., & Altenbuchner, J. A “Second-Generation Process” for the Synthesis ofL-Neopentylglycine:Asymmetric Reductive Amination Using a Recombinant Whole Cell Catalys. <i>Organic process research & development</i>. <strong>10</strong>,666-669 (2006)</br></br>
 
 
[7] Menzel, A., Werner, H., Altenbuchner, J., Gröger, H. From enzymes to "designer bugs" in reductive amination: A new process for the synthesis of L-tert-leucine using a whole cell-catalyst. <i>Engineering in Life Sciences</i>. <strong>4</strong>, 573-576, (2004)</br></br>
 
 
</p>
 
 
 
 
 
 
</div>
 
</div>
 
<!--end_ main-->
 
<!--end_ main-->
Line 208: Line 176:
 
<p style="font-size: 14px; color: #fff; margin-bottom: 0px;"><strong>Address:  </strong>Xiamen University, No. 422, Siming South Road, Xiamen, Fujian, P.R.China 361005</p>
 
<p style="font-size: 14px; color: #fff; margin-bottom: 0px;"><strong>Address:  </strong>Xiamen University, No. 422, Siming South Road, Xiamen, Fujian, P.R.China 361005</p>
 
</div>
 
</div>
<img src="https://static.igem.org/mediawiki/2015/1/1f/Amoy-Footer_xmulogo.png" style="width: 10%; display: inline-block; margin-left: 5%;" />
+
<a href="http://www.xmu.edu.cn/" target="_blank"><img src="https://static.igem.org/mediawiki/2015/1/1f/Amoy-Footer_xmulogo.png" style="width: 10%; display: inline-block; margin-left: 5%;" /></a>
 
<img src="https://static.igem.org/mediawiki/2015/3/31/Amoy-Footer_xmulname.png" style="width: 15%; display: inline-block; margin-left: 1%;" />
 
<img src="https://static.igem.org/mediawiki/2015/3/31/Amoy-Footer_xmulname.png" style="width: 15%; display: inline-block; margin-left: 1%;" />
<a href="#" target="_blank"><img src="https://static.igem.org/mediawiki/2015/5/5b/Amoy-Footer_facebook.png" style="width: 2%; display: inline-block; margin-left: 2%;" /></a>
+
<a href="https://www.facebook.com/amoyigem" target="_blank"><img src="https://static.igem.org/mediawiki/2015/5/5b/Amoy-Footer_facebook.png" style="width: 2%; display: inline-block; margin-left: 2%;" /></a>
<a href="#" target="_blank"><img src="https://static.igem.org/mediawiki/2015/0/02/Amoy-Footer_twitter.png" style="width: 2%; display: inline-block; margin-left: 2%;" /></a>
+
<a href="https://www.twitter.com/Amoy_igem" target="_blank"><img src="https://static.igem.org/mediawiki/2015/0/02/Amoy-Footer_twitter.png" style="width: 2%; display: inline-block; margin-left: 2%;" /></a>
 
</div>
 
</div>
  

Latest revision as of 03:00, 19 September 2015

Aomy/Project

DESCIPTION

L-tert-leucine is an unnatural amino acid which plays an important role in various industrial products, especially in pharmaceuticals.

With its application, many methods were developed for its preparation in the past decades. Some of them have low conversion rate and poor chiral selectivity.Thirty years ago, scientists developed enzymatic reductive amination to produce L-tert-leucine by using leucine dehydrogenase and formate dehydrogenase. This technology greatly improved the yield and excellent enantiomeric excess value of L-tert-leucine. It is regarded to be one of the most efficient routes. But due to the different activity of leucine dehydrogenase and format dehydrogenase, this method is not perfect(Figuer 1) [1]. The cofactor regeneration may be broken in reaction processes.

Figure 1 The enzymatic reductive amination for synthesizing L-tert-leucine and the bug of this method



In order to solve this problem, we put forward many methods. The basic idea is variable control. We constructed plasmids which bear leucine dehydrogenase gene (leudh) and formate dehydrogenase gene (fdh). One plasmid which contains both leucine dehydrogenase gene and format dehydrogenase gene controls the copy numbers and the transformation efficiency. And the only variable is efficiency of ribosome binding sites or strength of promoters. So the first method is changing different ribosome binding sites. Because of the weak activity of formate dehydrogenase, we connected fdh with the strongest ribosome binding site from iGEM registry, which is numbered BBa_B0034. Then, we changed the ribosome binding site of leudh(Figure 2) [2].

Figure 2 Method 1: changing ribosome binding site to regulate the activity of leucine dehydrogenase



Optimizing L-tert-leucine synthesis by changing the promoter is an alternative method. Promoter is also an important factor of translation process. So the second method is changing different promoters and finding out the optimal promoter.

However, the parts of different ribosome binding sites and promoters which we got from the iGEM authority cannot meet our demands, because these parts are not continuously adjustable. That means we may not be able to get optimal RBS or promoter for leudh. However, we were illuminated by the project did by Peking University in 2011. We get the idea that we could use genetic rheostats as RBS regulators. Then, we could get the excellent RBS efficiency and use RBS calculators to edit the RBSs' sequence to a suitable efficiency(Figure 3) [3,4].

Figure 3 Method 3: Using genetic rheostat to regulate the activity of leucine dehydrogenase

Reference:

[1] Li, J., Pan, J., Zhang, J. & Xu, H., J. Stereoselective synthesis of L-tert-leucine by a newly cloned leucine dehydrogenase from Exiguobacterium sibiricum. J. Mol. Catal. B-Enzym. 105, 11-17 (2014)
[2] http://https://2010.igem.org/Team:Warsaw/Stage1
[3] https://2011.igem.org/Team:Peking_R/Project/RNAToolkit
[4] Reeve, B., Hargest, T., Gilbert, C. & Ellis T. Predicting translation initiation rates for designing synthetic biology. Mini Review Article. 2, 1-6 (2014)

CONTACT US

Email: igemxmu@gmail.com

Website: 2015.igem.org/Team:Amoy

Address: Xiamen University, No. 422, Siming South Road, Xiamen, Fujian, P.R.China 361005