Difference between revisions of "Team:Amoy/Project/FutureWork"
ShannonLee (Talk | contribs) |
|||
(14 intermediate revisions by 2 users not shown) | |||
Line 10: | Line 10: | ||
<link rel="stylesheet" type="text/css" href="https://2015.igem.org/Template:Amoy/css/MenuBarCss?action=raw&ctype=text/css" /> | <link rel="stylesheet" type="text/css" href="https://2015.igem.org/Template:Amoy/css/MenuBarCss?action=raw&ctype=text/css" /> | ||
+ | |||
+ | <link rel="stylesheet" type="text/css" href="https://2015.igem.org/Template:Amoy/css/MenuCss?action=raw&ctype=text/css" /> | ||
+ | |||
+ | <script type="text/javascript" src="https://2015.igem.org/Template:Amoy/Javascript/MenuJs?action=raw&ctype=text/javascript"></script> | ||
</head> | </head> | ||
Line 33: | Line 37: | ||
}); | }); | ||
</script> | </script> | ||
+ | |||
<!--bg_pic--> | <!--bg_pic--> | ||
Line 44: | Line 49: | ||
<!--top_menu--> | <!--top_menu--> | ||
− | < | + | <span class="preload1"></span> <span class="preload2"></span> |
− | + | <ul id="nav"> | |
− | + | <li class="top"><a href="https://2015.igem.org/Team:Amoy/Team" id="products" class="top_link"><span class="down">TEAM</span></a> | |
− | + | <ul class="sub"> | |
− | + | <li><a href="https://2015.igem.org/Team:Amoy/Team#member_student">Member</a></li> | |
− | + | <li><a href="https://2015.igem.org/Team:Amoy/Member/Amoy">Amoy</a></li> | |
− | + | <li><a href="https://2015.igem.org/Team:Amoy/Attributions">Attributions</a></li> | |
− | + | </ul> | |
− | + | </li> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | < | + | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | <li class="top"><a href="https://2015.igem.org/Team:Amoy/Project" id="products" class="top_link"><span class="down active">PROJECT</span></a> | |
− | <ul> | + | <ul class="sub"> |
− | + | <li><a href="https://2015.igem.org/Team:Amoy/Project/Background">Background</a></li> | |
− | + | <li><a href="https://2015.igem.org/Team:Amoy/Description">Description</a></li> | |
− | + | <li><a href="https://2015.igem.org/Team:Amoy/Project/Methods">Methods</a></li> | |
− | + | <li><a href="https://2015.igem.org/Team:Amoy/Project/Results">Results</a></li> | |
− | + | <li><a href="https://2015.igem.org/Team:Amoy/Project/Discussion">Discussion</a></li> | |
− | + | <li><a href="https://2015.igem.org/Team:Amoy/Project/FutureWork">Future Work</a></li> | |
− | + | </ul> | |
− | + | </li> | |
− | + | ||
− | + | <li class="top"><a href="https://2015.igem.org/Team:Amoy/Notebook" id="products" class="top_link"><span class="down">NOTEBOOK</span></a> | |
− | + | <ul class="sub"> | |
− | + | <li><a href="https://2015.igem.org/Team:Amoy/Notebook/Notebook">Notebook</a></li> | |
− | + | <li><a href="https://2015.igem.org/Team:Amoy/Notebook/Protocol">Protocols</a></li> | |
− | + | <li><a href="https://2015.igem.org/Team:Amoy/Parts">Parts</a></li> | |
− | + | <li><a href="https://2015.igem.org/Team:Amoy/Notebook/Gallery">Gallery</a></li> | |
− | + | </ul> | |
− | + | </li> | |
− | + | ||
− | + | <li class="top"><a href="https://2015.igem.org/Team:Amoy/Interlab" id="products" class="top_link"><span class="down">INTERLAB</span></a></li> | |
− | + | ||
+ | <li class="top"><a href="https://2015.igem.org/Team:Amoy/Newsletter" id="products" class="top_link"><span class="down">NEWSLETTER</span></a> | ||
+ | <ul class="sub"> | ||
+ | <li><a href="https://2015.igem.org/Team:Amoy/Newsletter#title">Introduction</a></li> | ||
+ | <li><a href="https://2015.igem.org/Team:Amoy/Newsletter/Contribution">Contribution</a></li> | ||
+ | <li><a href="https://2015.igem.org/Team:Amoy/Newsletter/Discussion">Discussion</a></li> | ||
+ | <li><a href="https://2015.igem.org/Team:Amoy/Newsletter/Links">Links</a></li> | ||
+ | </ul> | ||
+ | </li> | ||
+ | |||
+ | <li class="top"><a href="https://2015.igem.org/Team:Amoy/Practices" id="products" class="top_link"><span class="down">PRACTICES</span></a> | ||
+ | <ul class="sub"> | ||
+ | <li><a href="https://2015.igem.org/Team:Amoy/Practices/Promotion">Promotion</a></li> | ||
+ | <li><a href="https://2015.igem.org/Team:Amoy/Practices/Talk">Talk</a></li> | ||
+ | <li><a href="https://2015.igem.org/Team:Amoy/Practice/Communication">Communication</a></li> | ||
+ | <li><a href="https://2015.igem.org/Team:Amoy/Collaborations">Collaborations</a></li> | ||
+ | </ul> | ||
+ | </li> | ||
+ | |||
+ | <li class="top"><a href="https://2015.igem.org/Team:Amoy/Judging" id="products" class="top_link"><span class="down">JUDGING</span></a> | ||
+ | <ul class="sub"> | ||
+ | <li><a href="https://2015.igem.org/Team:Amoy/Judging/Medal">Medal Criteria</a></li> | ||
+ | <li><a href="https://2015.igem.org/Team:Amoy/Judging/Acknowledgement">Acknowledgement</a></li> | ||
+ | </ul> | ||
+ | </li> | ||
+ | |||
+ | <li class="top"><a href="https://2015.igem.org/Team:Amoy/Safety" id="products" class="top_link"><span class="down">SAFETY</span></a></li> | ||
</ul> | </ul> | ||
− | |||
</div> | </div> | ||
Line 102: | Line 113: | ||
<!--content--> | <!--content--> | ||
− | + | <div id="main_content" style="width: 90%; margin: 0 auto; display: -webkit-box; padding-top: 50px;"> | |
− | <div id="main_content" | + | |
<!--little_menu--> | <!--little_menu--> | ||
Line 109: | Line 119: | ||
<a href="https://2015.igem.org/Team:Amoy/Project"><h4>Project</h4></a> | <a href="https://2015.igem.org/Team:Amoy/Project"><h4>Project</h4></a> | ||
<ul class="ul_menu"> | <ul class="ul_menu"> | ||
− | |||
<li><a href="https://2015.igem.org/Team:Amoy/Project/Background">Background</a></li> | <li><a href="https://2015.igem.org/Team:Amoy/Project/Background">Background</a></li> | ||
+ | <li><a href="https://2015.igem.org/Team:Amoy/Description">Description</a></li> | ||
<li><a href="https://2015.igem.org/Team:Amoy/Project/Methods">Methods</a></li> | <li><a href="https://2015.igem.org/Team:Amoy/Project/Methods">Methods</a></li> | ||
<li><a href="https://2015.igem.org/Team:Amoy/Project/Results">Results</a></li> | <li><a href="https://2015.igem.org/Team:Amoy/Project/Results">Results</a></li> | ||
Line 118: | Line 128: | ||
</div> | </div> | ||
− | + | ||
<!--word--> | <!--word--> | ||
− | <div id="title" | + | <div id="title" style="width: 70%; margin-left: 25%;"> |
<p id="title_p">FUTURE WORK</p> | <p id="title_p">FUTURE WORK</p> | ||
− | <p class="main_p">Owing to the | + | <p class="main_p">Owing to the limited time and the lack of ribosome binding sites (RBS) of different efficiency, we cannot get enough data to achieve regulating RBSs. However, we were illuminated by the project did by Peking University in 2011 [1]. And we come up with the idea that we could use genetic rheostats as means of RBSs' regulators. And then, we could get the excellent RBSs' efficiency and use RBS calculators to edit the RBSs' sequence to achieve a suitable efficiency.</br></br> |
Genetic rheostats are ligands-responsive RNA devices. From the kits, we can get a thiamine pyrophosphate (TPP)-regulated hammerhead ribozyme. This part is numbered K598003, which is a TPP down-regulated hammerhead ribozyme 2.5 with native RBS (Figure 1, [1]). | Genetic rheostats are ligands-responsive RNA devices. From the kits, we can get a thiamine pyrophosphate (TPP)-regulated hammerhead ribozyme. This part is numbered K598003, which is a TPP down-regulated hammerhead ribozyme 2.5 with native RBS (Figure 1, [1]). | ||
Line 130: | Line 140: | ||
<img class="main_img" src="https://static.igem.org/mediawiki/2015/5/5d/Amoy-Project_Future_figure1.jpg" style="width: 80%;" /> | <img class="main_img" src="https://static.igem.org/mediawiki/2015/5/5d/Amoy-Project_Future_figure1.jpg" style="width: 80%;" /> | ||
− | <p class="figure" style="text-align: center; margin-top: 20px; width: 80%;"><strong>Figure 1 | + | <p class="figure" style="text-align: center; margin-top: 20px; width: 80%;"><strong>Figure 1 </strong> Mechanism for TPP ribozyme 2.5 [1]</p> |
− | <p class="main_p">As | + | <p class="main_p"></br>As shown in Figure 1, TPP ribozyme 2.5 has a self-cleavage of hammerhead domain. At the absent of thiamine pyrophosphate, these RNA devices would cleave themselves and expose the ribosome binding sites. Then the translation processes start. However, TPP ribozyme 2.5 would transform to a structure that hides self-cleavage of hammerhead domain. As a consequence, ribosome binding site remains covered and the translation process stops. So TPP ribozyme 2.5 is a statistical ribosome binding site with which we can regulate the translation initial rate by changing the concentration of thiamine pyrophosphate.</br></br> |
− | However, statistical ribosome binding sites cannot be applied in industrial production | + | However, statistical ribosome binding sites cannot be applied in industrial production due to its complicated operations. So we need to change them into normal ribosome binding sites, which can be achieved by means of RBS calculators. There are two kinds of thermodynamics-based RBS calculators online. They are <strong>the RBS calculator</strong> and <strong>the UTR designer</strong> [2].</br></br> |
− | Therefore, we will | + | Therefore, we will apply TPP ribozyme 2.5 to the work we have done. As the work we have done the year, we will regulate the translation of leucine dehydrogenase (LeuDH). And the method is that we will use TPP ribozyme 2.5 as a RBS of <i>leudh</i>. What's more, we would change the concentration of TPP, and find the best concentration of TPP. Finally, we will get the RBS sequences with designed efficiency by means of RBS calculators, and this will be synthesized and employed in the final gene circuit.</br> |
− | |||
</p> | </p> | ||
− | <h1 class="main_h1" | + | <h1 class="main_h1">Reference:</h1> |
<p class="main_p">[1] <a href="https://2011.igem.org/Team:Peking_R/Project/RNAToolkit"> https://2011.igem.org/Team:Peking_R/Project/RNAToolkit</a></br> | <p class="main_p">[1] <a href="https://2011.igem.org/Team:Peking_R/Project/RNAToolkit"> https://2011.igem.org/Team:Peking_R/Project/RNAToolkit</a></br> | ||
Line 147: | Line 156: | ||
[2] Reeve, B., Hargest, T., Gilbert, C. & Ellis T. Predicting translation initiation rates for designing synthetic biology. <i>Mini Review Article</i>. <strong>2</strong>, 1-6 (2014) | [2] Reeve, B., Hargest, T., Gilbert, C. & Ellis T. Predicting translation initiation rates for designing synthetic biology. <i>Mini Review Article</i>. <strong>2</strong>, 1-6 (2014) | ||
</p> | </p> | ||
− | |||
− | |||
Latest revision as of 03:44, 19 September 2015
FUTURE WORK
Owing to the limited time and the lack of ribosome binding sites (RBS) of different efficiency, we cannot get enough data to achieve regulating RBSs. However, we were illuminated by the project did by Peking University in 2011 [1]. And we come up with the idea that we could use genetic rheostats as means of RBSs' regulators. And then, we could get the excellent RBSs' efficiency and use RBS calculators to edit the RBSs' sequence to achieve a suitable efficiency. Genetic rheostats are ligands-responsive RNA devices. From the kits, we can get a thiamine pyrophosphate (TPP)-regulated hammerhead ribozyme. This part is numbered K598003, which is a TPP down-regulated hammerhead ribozyme 2.5 with native RBS (Figure 1, [1]).
Figure 1 Mechanism for TPP ribozyme 2.5 [1]
As shown in Figure 1, TPP ribozyme 2.5 has a self-cleavage of hammerhead domain. At the absent of thiamine pyrophosphate, these RNA devices would cleave themselves and expose the ribosome binding sites. Then the translation processes start. However, TPP ribozyme 2.5 would transform to a structure that hides self-cleavage of hammerhead domain. As a consequence, ribosome binding site remains covered and the translation process stops. So TPP ribozyme 2.5 is a statistical ribosome binding site with which we can regulate the translation initial rate by changing the concentration of thiamine pyrophosphate. However, statistical ribosome binding sites cannot be applied in industrial production due to its complicated operations. So we need to change them into normal ribosome binding sites, which can be achieved by means of RBS calculators. There are two kinds of thermodynamics-based RBS calculators online. They are the RBS calculator and the UTR designer [2]. Therefore, we will apply TPP ribozyme 2.5 to the work we have done. As the work we have done the year, we will regulate the translation of leucine dehydrogenase (LeuDH). And the method is that we will use TPP ribozyme 2.5 as a RBS of leudh. What's more, we would change the concentration of TPP, and find the best concentration of TPP. Finally, we will get the RBS sequences with designed efficiency by means of RBS calculators, and this will be synthesized and employed in the final gene circuit.
Reference:
[1] https://2011.igem.org/Team:Peking_R/Project/RNAToolkit [2] Reeve, B., Hargest, T., Gilbert, C. & Ellis T. Predicting translation initiation rates for designing synthetic biology. Mini Review Article. 2, 1-6 (2014)
CONTACT US
Email: igemxmu@gmail.com
Website: 2015.igem.org/Team:Amoy
Address: Xiamen University, No. 422, Siming South Road, Xiamen, Fujian, P.R.China 361005