Difference between revisions of "Team:MIT/ModelingCoCulture"

Line 25: Line 25:
 
Co-Culture Simulations and Conclusions
 
Co-Culture Simulations and Conclusions
 
</div>
 
</div>
 
<img src = "https://static.igem.org/mediawiki/2015/5/5d/Team-MIT-cocult_sim.jpeg"
 
height = auto
 
width = 100%
 
display = "center">
 
<br> </br>
 
  
 
<div class = "subtitle">
 
<div class = "subtitle">
Line 113: Line 107:
 
</div>
 
</div>
  
 +
<div class = "subtitle">
 +
dFBA Simulation of a Pure Culture of C. hutchinsonii
 +
</div>
  
 +
<img src = "https://static.igem.org/mediawiki/2015/5/5d/Team-MIT-cocult_sim.jpeg"
 +
height = auto
 +
width = 100%
 +
display = "center">
 +
<br> </br>
 
</body>
 
</body>
  

Revision as of 03:48, 19 September 2015


Co-Culture Simulations and Conclusions
Extracellular Dynamic Mass Balances
\begin{equation} \label{eq:1} \frac{dX_{hutch}}{dt} = \mu_{hutch}X_{hutch} - k_dP_{hutch} \end{equation} \begin{equation} \label{eq:2} \frac{dX_{coli}}{dt} = \mu_{coli}X_{coli} - k_dP_{coli} \end{equation} \begin{equation} \label{eq:3} \frac{dS_{fp}}{dt} = -MW_{fp} \nu_{fp,hutch}X_{hutch}, \end{equation} \begin{equation} \label{eq:4} \frac{dS_{g}}{dt} = MW_{g} [ (0.252 \nu_{fp,hutch} + \nu_{g,hutch}) X_{hutch} + \nu_{g,coli} X_{coli}] \end{equation} \begin{equation} \label{eq:5} \frac{dS_{x}}{dt} = MW_{x} ( 0.048 \nu_{fp,hutch}X_{hutch} + \nu_{x,coli} X_{coli}) \end{equation} \begin{equation} \label{eq:6} \frac{dS_{cn}}{dt} = MW_{cn} (0.294 \nu_{fp,hutch} + \nu_{cn,hutch}) X_{hutch} \end{equation} \begin{equation} \label{eq:7} \frac{dS_{xo}}{dt} = MW_{xo} 0.056 \nu_{fp,hutch} X_{hutch} \end{equation} \begin{equation} \label{eq:8} \frac{dS_{O_2}}{dt} = 0 \end{equation}
Uptake/Secretion Kinetics
\begin{equation} \nu_{fp,hutch} = \dfrac{\nu_{fp,hutch,max}S_{fp}}{K_{fp,hutch}+S_{fp}} \dfrac{1}{1+K_{i,g,hutch}S_g} \dfrac{1}{1+K_{i,cn,hutch}S_{cn}} \dfrac{1}{1+K_{i,x,hutch}S_{x}}\dfrac{1}{1+K_{i,xo,hutch}S_{xo}} \end{equation} \begin{equation} \nu_{g,hutch} = -\dfrac{\nu_{g,hutch,max}S_g}{K_{g,hutch}+S_g} \dfrac{1}{1+S_g/K_{i,fp,g,hutch}} \end{equation} \begin{equation} \nu_{cn,hutch} = -\dfrac{\nu_{cn,hutch,max}S_{cn}}{K_{cn,hutch}+S_{cn}} \dfrac{1}{1+S_{fp}/K_{i,fp,cn,hutch}} \end{equation} \begin{equation} \nu_{O_2,hutch} = -\dfrac{\nu_{O_2,max}S_{O_2}}{K_{O_2}+S_{O_2}} \end{equation} \begin{equation} \nu_{g,coli} = -\dfrac{\nu_{g,coli,max}S_{g}}{K_{g,coli}+S_{g}} \end{equation} \begin{equation} \nu_{x,coli} = -\dfrac{\nu_{x,coli,max}S_{x}}{K_{x,coli}+S_{x}} \end{equation} \begin{equation} \nu_{O_2,coli} = -\dfrac{\nu_{O_2,max}S_{O_2}}{K_{O_2}+S_{O_2}} \end{equation}
dFBA Simulation of a Pure Culture of C. hutchinsonii